Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T05:32:59.800Z Has data issue: false hasContentIssue false

Consensus between genes and stones in the biogeographic and evolutionary history of Central America

Published online by Cambridge University Press:  20 January 2017

Tania Anaid Gutiérrez-García
Affiliation:
Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, Ciudad Universitaria, México DF, 04510, Mexico Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Torre II de Humanidades, Ciudad Universitaria, México DF, 04510, Mexico
Ella Vázquez-Domínguez*
Affiliation:
Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, Ciudad Universitaria, México DF, 04510, Mexico
*
*Corresponding author. Fax: + 52 55 5616 1976. E-mail address:[email protected] (E. Vázquez-Domínguez).

Abstract

Results from genetic and geologic studies can be combined to elucidate some general patterns of the biogeographic and evolutionary history of Central America (CA) and of its biota. Based on an ample review of geologic, biogeographic and genetic studies, our aim was to examine how common genetic patterns can be linked with geologic processes. Considering information about geologic and tectonic evolution of CA, we subdivided the region into four tectonic blocks: Maya, Chortis, Chorotega and Chocó. Species exchange between North/South America and CA encompasses three events: a first migration during the Late Cretaceous–Early Paleocene, a second through a terrestrial corridor preceding the formation of the Isthmus of Panama (IP), and the third involving a major dispersion through the IP. Such events caused similar genetic differentiation patterns and left a signature on the diversification of extant taxa, which we propose as three evolutionary groups: 1) Mayan, characterized by marked genetic structure and divergence, multiple refugia and formation of cryptic species; 2) Mid-CA, defined by high differentiation at the population level and between highland and lowlands, associated with intense volcanic activity; 3) Panamian, distinguished by migration from north to south and vice versa via de IP, with markedly high species divergence and speciation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre-Planter, E., Jaramillo-Correa, J.P., Gómez-Acevedo, S., Khasa, D.P., Bousquet, J., and Eguiarte, L.E. Phylogeny, diversification rates and species boundaries of Mesoamerica firs (Abies, Pinaceae) in a genus-wide context. Molecular Phylogenetics and Evolution 62, (2012). 263274.CrossRefGoogle Scholar
Arbeláez-Cortés, E., Nyári, A.S., and Navarro-Sigüenza, A.G. The differential effect of lowlands on the phylogeographic pattern of a Mesoamerican montane species (Lepidocolaptes affinis, Aves: Furnariidae). Molecular Phylogenetics and Evolution 57, (2010). 658668.Google Scholar
Arellano, E., González-Cozátl, F.X., and Rogers, D. Molecular systematics of Middle American harvest mice Reithrodontomys (Muridae), estimated from mitochondrial cytochrome b gene sequences. Molecular Phylogenetics and Evolution 37, (2005). 529540.Google Scholar
Arrivillaga, J.C., Norris, D.E., Feliciangeli, M.D., and Lanzaro, G.C. Phylogeography of the Neotropical sand fly Lutzomyia longipalpis inferred from mitochondrial DNA sequences. Infection, Genetics and Evolution 2, (2002). 8395.Google Scholar
Barber, B.R., and Klicka, J. Two pulses of diversification across the isthmus of Tehuantepec in a montane Mexican bird fauna. Proceedings of the Royal Society B 277, (2010). 26752681.Google Scholar
Barrera-Guzmán, A.O., Milá, B., Sánchez-González, L.A., and Navarro-Sigüenza, A.G. Speciation in an avian complex endemic to the mountains of Middle America (Ergaticus, Aves: Parulidae). Molecular Phylogenetics and Evolution 62, (2012). 907920.Google Scholar
Barrier, E., Velasquillo, L., Chavez, M., and Gaulon, R. Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics 287, (1998). 7796.Google Scholar
Bermingham, E., and Martin, A.P. Comparative mtDNA phylogeography of Neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America. Molecular Ecology 7, (1998). 499517.CrossRefGoogle ScholarPubMed
Blanton, R., and Feinman, G. The Mesoamerican world system. American Anthropologist, New Series 86, (1984). 673682.Google Scholar
Brueckner, H.K., Lallemant, H.G.A., Sisson, V.B., Harlow, G.E., Hemming, S.R., Martens, U., Tsujimori, T., and Sorensen, S.S. Metamorphic reworking of a high pressure–low temperature mélange along the Motagua fault, Guatemala: a record of Neocomian and Maastrichtian transpressional tectonics. Earth and Planetary Science Letters 284, (2009). 228235.CrossRefGoogle Scholar
Bryson, R.W. Jr., García-Vázquez, U.O., and Riddle, B.R. Phylogeography of the Middle American gopher snakes: mixed responses to biogeographical barriers across the Mexican transition zone. Journal of Biogeography 38, (2011). 15701584.Google Scholar
Bush, M.B., Correa-Metrio, A.Y., Hodell, D.A., Brenner, M., Anselmetti, F.S., Ariztegui, D., Mueller, A.D., Curtis, J.H., Grzestik, D.A., Burton, C., and Gilli, A. Re-evaluation of climate change in lowland Central America during the Last Glacial Maximum using new sediment cores from Lake Petén Itzá, Guatemala. Developments in Paleoenvironmental Research 14, (2009). 113128.Google Scholar
Cadena, C.D., Klicka, J., and Ricklefs, R.E. Evolutionary differentiation in the Neotropical montane region: molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves-Emberizidae). Molecular Phylogenetics and Evolution 44, (2007). 9931016.CrossRefGoogle Scholar
Carr, M.J., Feigenson, M.D., Patino, L.C., and Walker, J.A. Volcanism and geochemistry in Central America: progress and problems. Eiler, J., and Abers, G. Inside the Subduction Factory. Geophysical Monograph Series 138, (2003). 153179.Google Scholar
Carr, M.J., Sagnior, I., Alvarado, G.E., Bolge, L.L., Lindsay, F.N., Milidakis, K., Turrin, B.D., Feigenson, M.D., Swisher, C.C. III Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochemistry, Geophysics, Geosystems 8, (2007). Q06001 http://dx.doi.org/10.1029/2006GC001396CrossRefGoogle Scholar
Case, J.A., Goin, F.J., and Woodburne, M.O. “South American” marsupials from the late Cretaceous of north America and the origin of marsupial cohorts. Journal of Mammalian Evolution 12, (2005). 461494.Google Scholar
Castoe, T.A., Chippindale, P.T., Campbell, J.A., Ammerman, L.K., and Parkinson, C.L. Molecular systematic of the middle American jumping pitvipers (genus Atropoides) and phylogeography of the Atropoides nummifer complex. Herpetologica 59, (2003). 421432.CrossRefGoogle Scholar
Cavender-Bares, J., González-Rodríguez, A., Pahlich, A., Koehler, K., and Deacon, N. Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. Journal of Biogeography 38, (2011). 962981.CrossRefGoogle Scholar
Cavers, S., Navarro, C., and Lowe, A.J. Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica. Molecular Ecology 12, (2003). 14511460.Google Scholar
Chakrabarty, P. Systematics and historical biogeography of Greater Antillean Cichlidae. Molecular Phylogenetics and Evolution 39, (2006). 619627.Google Scholar
Clark, P.U., and Mix, A.C. Ice sheets and sea level of the LGM. Quaternary Science Reviews 21, (2002). 17.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, A.M. The Last Glacial Maximum. Science 325, (2009). 710714.Google Scholar
Coates, A.G., and Obando, J.A. The geologic evolution of the Central American Isthmus. Jackson, J.B.C., Budd, A.F., and Coates, A.G. Evolution and Environment in Tropical America. (1996). The University of Chicago Press, Chicago. 2156.Google Scholar
Coates, A.G., Jackson, J.B.C., Collins, L.S., Cronin, T.M., Dowsett, H.J., Bybell, L.M., Jung, P., and Obando, J.A. Closure of the Isthmus of Panama; the near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin 104, (1992). 814828.Google Scholar
Coates, A.G., Collins, L.S., Aubry, M.P., and Berggren, W.A. The geology of the Darien, Panama, and the late Miocene–Pliocene collision of the Panama arc with northwestern South America. Geological Society of America Bulletin 116, (2004). 13271344.Google Scholar
Cody, S., Richardson, J.E., Rull, V., Ellis, C., and Pennington, R.T. The Great American Biotic Interchange revisited. Ecography 33, (2010). 326332.CrossRefGoogle Scholar
Cortés-Rodríguez, N., Hernández-Baños, B.E., Navarro-Sigüenza, A.G., Peterson, A.T., and García-Moreno, J. Phylogeography and population genetics of the amethyst-throated hummingbird (Lampornis amethystinus). Molecular Phylogenetics and Evolution 48, (2008). 111.Google Scholar
Crawford, A.J., and Smith, E.N. Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 35, (2005). 536555.Google Scholar
DaCosta, J.M., and Klicka, J. The Great American Interchange in birds: a phylogenetic perspective with the genus Trogon . Molecular Ecology 17, (2008). 13281343.CrossRefGoogle ScholarPubMed
Darce, M., Levi, B., Nyström, J.O., and Troëng, B. Alteration patterns in volcanic rocks within an east–west traverse through central Nicaragua. Journal of South American Earth Sciences 2, (1989). 155161.CrossRefGoogle Scholar
Dávalos, L.M. Phylogeny and biogeography of Caribbean mammals. Biological Journal of the Linnean Society 81, (2004). 373394.Google Scholar
Daza, J.M., Castoe, T.A., and Parkinson, C.L. Using regional comparative phylogeographic data from snake lineages to infer historical processes in Middle America. Ecography 33, (2010). 343354.Google Scholar
Dick, C.W., Abdul-Salim, K., and Bermingham, E. Molecular systematic analysis reveals cryptic Tertiary diversification of a widespread tropical rainforest tree. The American Naturalist 162, (2003). 691703.Google Scholar
Driese, S.G., Orvis, K.H., Horn, S.P., Li, Z.-H., and Jennings, D.S. Paleosol evidence for Quaternary uplift and for climate and ecosystem changes in the Cordillera de Talamanca, Costa Rica. Palaeoecography, Palaeoclimatology, Palaeoecology 248, (2006). 123.Google Scholar
Eizirik, E., Bonatto, S.L., Johnson, W.E., Crawshaw, P.G. Jr., Vié, J.C., Brousset, D.M., O'Brien, S.J., and Salzano, F.M. Phylogeographic patterns and evolution of the mitochondrial DNA control region in two Neotropical cats (Mammalia, Felidae). Journal of Molecular Evolution 47, (1998). 613624.CrossRefGoogle ScholarPubMed
Eizirik, E., Kim, J.-H., Menotti-Raymond, M., Crawshaw, P.G. Jr., O'Brien, S.J., and Jhonson, W.E. Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia, Felidae). Molecular Ecology 10, (2001). 6579.Google Scholar
Escalante, G., and Astorga, A. Geologia del este de Costa Rica y el norte de Panamá. Revista Geológica de America Central Volumen Especial: Terremoto de Limón. (1994). 114.Google Scholar
Esteva, M., Cervantes, F.A., Brant, S.V., and Cook, J.A. Molecular phylogeny of long-tailed shrews (genus Sorex) from México and Guatemala. Zootaxa 2615, (2010). 4765. (NOT USED?) Google Scholar
Farris, D.W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S.A., Montes, C., Cardona, A., Mora, A., Speakman, R.J., Glascock, M.D., and Valencia, V. Fracturing of the Panamian Isthmus during initial collision with South America. Geology 39, (2011). 10071010.Google Scholar
Ferrusquía-Villafranca, I., Applegate, S.P., and Espinosa-Arrubarrena, L. First paleogene selachifauna of the middle American–Caribbean–Antillean region, La mesa de Copoya, west-central Chiapas—geologic setting. Revista Mexicana de Ciencias Geológicas 17, (2000). 123.Google Scholar
Flannery, K.V. The postglacial “readaptation” as viewed from Mesoamerica. American Antiquity 31, (1966). 800805.Google Scholar
Fraser, D.J., and Bernatchez, L. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology 10, (2001). 27412752.CrossRefGoogle ScholarPubMed
García-Moreno, J., Navarro-Sigüenza, A.G., Peterson, A.T., and Sánchez-González, L.A. Genetic variation coincides with geographic structure in the common bush-tanager (Chlorospingus ophthalmicus) complex from Mexico. Molecular Phylogenetics and Evolution 33, (2004). 186196.Google Scholar
García-Palomo, A., Macías, J.L., and Espíndola, J.M. Strike-slip faults and K-alkaline volcanism at El Chichón volcano southeastern Mexico. Journal of Volcanology and Geothermal Research 136, (2004). 247268.Google Scholar
García-Palomo, A., Macías, J.L., Arce, J.L., Mora, J.C., Hughes, S., Saucedo, R., Espíndola, J.M., Escobar, R., and Layer, P. Geological evolution of the Tacaná Volcanic Complex, México-Guatemala. Rose, W.I., Bluth, G.J.S., Carr, M.J., Ewert, J., Patino, L.C., and Vallance, J. Volcanic hazards in Central America. Geological Society of America Special Paper 412, (2006). 3957.Google Scholar
Giunta, G., and Oliveri, E. Some remarks on the Caribbean Plate kinematics: facts and remaining problems. James, K.H., Lorente, M.A., and Pindell, J.L. The Origin and Evolution of the Caribbean Plate. Geological Society of London Special Publications 328, (2009). 155.Google Scholar
Graham, A. Studies in Neotropical paleobotany. VII. The lower Miocene communities of Panama—the La Boca formation. Annals of the Missouri Botanical Garden 76, (1989). 5066.Google Scholar
Guevara-Chumacero, L.M., López-Wilchis, R., Pedroche, F.F., Juste, J., Ibáñez, C., and Barriga-Sosa, I. Molecular phylogeography of Pteronotus davyi (Chiroptera: Mormoopidae) in Mexico. Journal of Mammalogy 91, (2010). 220232.Google Scholar
Gutiérrez-García, T.A., and Vázquez-Domínguez, E. Biogeographically dynamic genetic structure bridging two continents in the monotypic Central American rodent, Ototylomys phyllotis . Biological Journal of the Linnean Society 107, (2012). 593610.CrossRefGoogle Scholar
Gutiérrez-Rodríguez, C., Ornelas, J.F., and Rodríguez-Gómez, F. Chloroplast DNA phylogeography of a distylous shrub (Palicourea padifolia, Rubiaceae) reveals past fragmentation and demographic expansion in Mexican cloud forests. Molecular Phylogenetics and Evolution 61, (2011). 603615.Google Scholar
Haq, B.U., Handerbol, J., and Vail, P.R. Chronology of fluctuating sea levels since the Triassic. Science 235, (1987). 11561167.Google Scholar
Harmon, R.S. Geological development of Panama. Harmon, R.S. The Río Chagres, Panama. A Multidisciplinary Profile of a Tropical Watershed. Water Science and Technology Library 52, (2005). 4562.Google Scholar
Hasbún, C.R., Gómez, A., Khöler, G.G., and Lunt, D.H. Mitochondrial DNA phylogeography of the Mesoamerican spiny-tailed lizards (Ctenosaura quinquecarinata complex): historical biogeography, species status and conservation. Molecular Ecology 14, (2005). 30953107.CrossRefGoogle ScholarPubMed
Hauswaldt, J.S., Ludewig, A.-K., Vences, M., and Pröhl, H. Widespread co-occurrence of divergent mitochondrial haplotype lineages in a Central American species of poison frog (Oophaga pumilio). Journal of Biogeography 38, (2011). 711726.Google Scholar
Heinicke, M.P., Duellman, W.E., and Hedges, S.B. Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proceedings of the National Academy of Sciences of the United States of America 104, (2007). 1009210097.CrossRefGoogle ScholarPubMed
Herrera, F., Manchester, S.R., Hoot, S.B., Wefferling, K.M., Carvalho, M.R., and Jaramillo, C. Phytogeographic implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. American Journal of Botany 98, (2011). 20042017.Google Scholar
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, (2000). 907913.Google Scholar
Hillesheim, M.B., Hodell, D.A., Leyden, B.W., Brenner, M., Curtis, J.H., Anselmetti, F.S., Ariztegui, D., Buck, D.G., Guilderson, T.P., Rosenmeier, M.F., and Schurrenberger, T.P. Climate change in lowland Central America during the late deglacial and early Holocene. Journal of Quaternary Science 20, (2005). 363376.CrossRefGoogle Scholar
Hoffmann, F.G., and Baker, R.J. Comparative phylogeography of short-tailed bats (Carollia: Phyllostomidae). Molecular Ecology 12, (2003). 34033414.Google Scholar
Hughen, K.A., Overpeck, J.T., Peterson, L.C., and Trumbore, S. Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature 7, (1996). 5154.Google Scholar
Iturralde-Vinent, M.A. Meso-Cenozoic Caribbean paleogeography: implications for the historical biogeography of the region. International Geology Review 48, (2006). 791827.CrossRefGoogle Scholar
Iturralde-Vinent, M.A., and MacPhee, R.D.E. Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History 238, (1999). 195.Google Scholar
Janoušek, V., Erban, V., Holub, F.V., Magna, T., Bellon, H., MIčoch, B., Wiechert, U., and Rapprich, V. Geochemistry and genesis of behind-arc basaltic lavas from eastern Nicaragua. Journal of Volcanology and Geothermal Research 192, (2010). 232256.Google Scholar
Jaramillo-Correa, J.P., Aguirre-Planter, E., Khasa, D.P., Eguiarte, L.E., Piñero, D., Furnier, G.R., and Bousquet, J. Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern México and Guatemala. Molecular Ecology 17, (2008). 24762490.Google Scholar
Jardón-Barbolla, L., Delgado-Valerio, P., Geada-López, G., Vázquez-Lobo, A., and Piñero, D. Phylogeography of Pinus subsection Australes in the Caribbean basin. Annals of Botany 107, (2011). 229241.Google Scholar
Johnston, S.T., and Thorkelson, D.J. Cocos-Nazca slab window beneath Central America. Earth and Planetary Science Letters 146, (1997). 465474.CrossRefGoogle Scholar
Kellog, J.N., and Vega, V. Tectonic development of Panama, Costa Rica and the Colombian Andes: constraints from global positioning system geodetic studies and gravity. Geological Society of America Special Papers 295, (1995). 7590.CrossRefGoogle Scholar
Keppie, J.D., and Morán-Zenteno, D.J. Tectonic implications of alternative Cenozoic reconstructions for southern Mexico and the Chortis Block. International Geology Review 47, (2005). 473491.Google Scholar
Kirby, M.X., and MacFadden, B. Was southern Central America an archipelago or a peninsula in the middle Miocene? A test using land-mammals body size. Palaeogeography, Palaeoclimatology, Palaeoecology 228, (2005). 193202.Google Scholar
Kirchhoff, P. Mesoamerica. Acta Americana 1, (1943). 92107.Google Scholar
Kutterolf, S., Freundt, A., Pérez, W., Whermann, H., and Schmincke, H.U. Late Pleistocene to Holocene temporal succession and magnitudes of highly-explosive volcanic eruptions in western-central Nicaragua. Journal of Volcanology and Geothermal Research 163, (2007). 5582.Google Scholar
Lessios, H.A., Kessing, B.D., Robertson, D.R., and Paulay, G. Phylogeography of the Pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 53, (1999). 806817.Google Scholar
Lessios, H.A., Kane, J., and Robertson, D.R. Phylogeography of the pantropical sea urchin Tripneustes contrasting patterns of population structure between oceans. Evolution 57, (2003). 20262036.Google Scholar
Lowe, J.J., and Walker, M.J.C. Reconstructing Quaternary Environments. (1997). Addison Wesley Logman Limited, London.Google Scholar
Lugo-Hubp, J., Aceves-Quesada, J.F., and Espinasa-Peña, R. Rasgos geomorfológicos mayores de la península de Yucatán. Revista Mexicana de Ciencias Geológicas 10, (1992). 143150.Google Scholar
Manea, V.C., and Manea, M. Origin of Modern Chiapanecan Volcanic Arc in southern Mexico inferred from thermal models. Rose, W.I., Bluth, G.J.S., Carr, M.J., Ewert, W.J., Patino, L.C., and Vallance, J.W. Natural Hazards in Central America. Geological Society of America Special Papers 412, (2005). 2738.Google Scholar
Marshall, L.G. Land mammals and the Great American Interchange. American Scientist 76, (1988). 380388.Google Scholar
Marshall, J.S. Chapter 3: the geomorphology and physiographic provinces of CA. Bundschuh, J., and Alvarado, G.E. Central America, Geology, Resources and Hazards. (2007). Taylor & Francis, UK. 151.Google Scholar
Martin, A.P., and Palumbi, S.R. Body size, metabolic rate, generation time, and the molecular clock. Proceedings of the National Academy of Sciences of the United States of America 90, (1993). 40874091.Google Scholar
Martínez-Solano, I., Peralta-García, A., Jockusch, E.L., Wake, D.B., Vázquez-Domínguez, E., and Parra-Olea, G. Molecular systematics of Batrachoseps (Caudata, Plethodontidae) in southern California and the Baja California: mitochondrial-nuclear DNA discordance and the evolutionary history of B. major . Molecular Phylogenetics and Evolution 63, (2012). 131149.CrossRefGoogle ScholarPubMed
Medinilla, E.E., Sánchez, I., Bautista, M.G., and Monterrubio, C.L. Análisis de la distribución de roedores de la familia Muridae en el sur de México. Vázquez-Domínguez, E., and Hafner, D.J. Genética y Mamíferos Mexicanos: Presente y Futuro. New Mexico Museum of Natural History & Science Bulletin 32, (2006). 4754.Google Scholar
Miller, T.E. Geologic and hydrologic control on karst and cave development in Belize. Journal of Cave and Karst Studies 58, (1996). 100120.Google Scholar
Miura, O., Torchin, M.E., Bermingham, E., Jacobs, D.K., and Hechinger, R.F. Flying shells: historical dispersal of marine snails across Central America. Proceedings of the Royal Society B 279, (2012). 10611067.Google Scholar
Montes, C., Cardona, A., McFadden, R., Morón, S.E., Silva, C.A., Restrepo-Moreno, S., Ramírez, D.A., Hoyos, N., Wilson, J., Farris, D., Bayona, G.A., Jaramillo, C.A., Valencia, V., Bryan, J., and Flores, J.A. Evidence for middle Eocene and younger land emergence in central Panama: implications for isthmus closure. Geological Society of America Bulletin 124, (2012). 780799.Google Scholar
Mulcahy, D.G., Mendelson, J.R. III Phylogeography and speciation of the morphologically variable, widespread species Bufo valliceps, based on molecular evidence of mtDNA. Molecular Phylogenetics and Evolution 17, (2000). 173189.Google Scholar
Mulcahy, D.G., Morrill, B.H., Mendelson, J.R. III Historical biogeography of lowland species of toads (Bufo) across the Trans-Mexican Neovolcanic Belt and the Isthmus of Tehuantepec. Journal of Biogeography 33, (2006). 18891904.CrossRefGoogle Scholar
Muss, A., Robertson, D.R., Stepien, C.A., Wirtz, P., and Bowen, B.W. Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55, (2001). 561572.Google Scholar
Nee, S., Mooers, A.O., and Harvey, P.H. Tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences of the United States of America 89, (1992). 83228326.Google Scholar
Newkirk, D.R., and Martin, E. Circulation through the Central American Seaway during the Miocene carbonate crash. Geology 37, (2009). 8790.Google Scholar
Novick, R.R., Dick, Ch.W., Lemes, M.R., Navarro, C., Caccone, S., and Bermingham, E. Genetic structure of a Mesoamerican population of big-leaf mahogany (Swietenia macrophylla) inferred from microsatellite analysis. Molecular Ecology 12, (2003). 28852893.Google Scholar
Ordóñez-Garza, N., Matson, J.O., Strauss, R.E., Bradley, R.D., and Salazar-Bravo, J. Patterns of phenotypic and genetic variation in three species of endemic Mesoamerican Peromyscus (Rodentia: Cricetidae). Journal of Mammalogy 91, (2010). 848859.Google Scholar
Orellana, R., Islebe, G., and Espadas, C. Flora y vegetación de la península de Yucatán. Colunga-García Marín, P., and Saavedra, A.L. Naturaleza y Sociedad en el Área Maya: Pasado, Presente y Futuro. (2003). Academia Mexicana de Ciencias, México. 3752.Google Scholar
Ornelas, J.F., Ruiz-Sánchez, E., and Sosa, V. Phylogeography of Podocarpus matudae (Podocarpaceae): pre-Quaternary relicts in northern Mesoamerican cloud forests. Journal of Biogeography 37, (2010). 23842396.Google Scholar
Ortega-Gutiérrez, F., Solari, L.A., and Solé, J. Polyphase, high-temperature eclogite-facies metamorphism in the Chuacús complex, central Guatemala: petrology, geochronology, and tectonic implications. International Geology Review 46, (2004). 445470.Google Scholar
Ortega-Gutiérrez, F., Solari, L.A., Ortega-Obregón, C., Elías-Herrera, M., Martens, U., Morán-Icál, S., Chiquín, M., Keppie, J.D., Torres de León, R., and Schaaf, P. The Maya-Chortis boundary: a tectonostratigraphic approach. International Geology Review 49, (2007). 9961024.Google Scholar
Parkinson, C.L., Zamudio, K.R., and Greene, H.W. Phylogeography of the pitviper clade Agkistrodon: historical ecology, species status, and conservation of cantils. Molecular Ecology 9, (2000). 411420.Google Scholar
Perdices, A., Bermingham, E., Montilla, A., and Doadrio, I. Evolutionary history of the genus Rhamdia (Teleostei: Pimelodidae) in Central America. Molecular Phylogenetics and Evolution 25, (2002). 172189.CrossRefGoogle ScholarPubMed
Perdices, A., Doadrio, I., and Bermingham, E. Evolutionary history of the synbranchid eels (Teleostei: Synbranchidae) in Central America and the Caribbean islands inferred from their molecular phylogeny. Molecular Phylogenetics and Evolution 37, (2005). 460473.Google Scholar
Pindell, J.L., and Kennan, L. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. James, K.H., Lorente, M.A., and Pindell, J.L. The Origin and Evolution of the Caribbean Plate. Geological Society of London Special Publications 328, (2009). 155.Google Scholar
Poelchau, M.F., and Hamrick, J.L. Comparative phylogeography of three common Neotropical tree species. Journal of Biogeography (2011). http://dx.doi.org/10.1111/j.1365-2699.2011.02599.xGoogle Scholar
Razo-Mendivil, U., Vázquez-Domínguez, E., Rosas-Valdez, R., Pérez-Ponce de León, G., and Nadler, S.A. Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. International Journal for Parasitology 70, (2010). 471486.CrossRefGoogle Scholar
Rogers, R.D., Kárason, H., and Van der Hilst, R.D. Epeirogenic uplift above a detached slab in northern Central America. Geology 30, (2002). 10311034.2.0.CO;2>CrossRefGoogle Scholar
Saginor, I., Gazel, E., Carr, M.J., Swisher, C.C. III, and Turrin, B. New Pliocene–Pleistocene 40AR/39AR ages fill in temporal gaps in the Nicaraguan volcanic record. Journal of Volcanology and Geothermal Research 202, (2011). 143152.Google Scholar
Scotti-Saintagne, C., Dick, C.W., Caron, H., Vendramin, G.G., Guichoux, E., Buonanici, A., Duret, C., Sire, P., Valencia, R., Lemes, M.R., Gribel, R., and Scotti, I. Phylogeography of a species complex of lowland Neotropical rain forest trees (Carapa, Meliaceae). Journal of Biogeography (2012). http://dx.doi.org/10.1111/j.1365-2699.2011.02678.xGoogle Scholar
Siebert, L., and Simkin, T. Volcanoes of the world: an illustrated catalogue of the Holocene volcanoes and their eruptions. Global Volcanism Program Digital Information Series GVP-3, (2002). Smithsonian Institution, (http://www.volcano.si.edu/world/)Google Scholar
Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M., Gómez-Tuena, A., and Schaaf, P. Refining the age of magmatism in the Altos Cuchumatanes, western Guatemala, by LA-ICPMS, and tectonic implications. International Geology Review 52, (2010). 977998.Google Scholar
Soto, G.J., and Alvarado, G.E. Eruptive history of Arenal volcano, Costa Rica, 7 ka to present. Journal of Volcanology and Geothermal Research 157, (2006). 254269.Google Scholar
Steiner, M.B. Pangean reconstruction of the Yucatan Block: its Permian, Triassic and Jurassic geologic and tectonic history. Geological Society of American Special Papers 393, (2005). 457480.Google Scholar
Stillman, J.H., and Reeb, C.A. Molecular phylogeny of Eastern Pacific porcelain crabs, genera Petrolisthes and Pachycheles, based on the mtDNA 16S rDNA sequence: phylogeographic and systematic implications. Molecular Phylogenetics and Evolution 19, 2 (2001). 236245.Google Scholar
Strecker, U., Faúndez, V.H., and Wilkens, H. Phylogeography of surface and cave Astyanax (Teleostei) from Central and North America based on cytochrome b sequence data. Molecular Phylogenetics and Evolution 33, (2004). 469481.CrossRefGoogle ScholarPubMed
Sullivan, J., Arellano, E., and Rogers, D.S. Comparative phylogeography of Mesoamerican highland rodents: concerted versus independent response to past climatic fluctuations. The American Naturalist 155, (2000). 755768.Google Scholar
U.S. Geological Survey, Divisions of geologic time—major chronostratigraphic and geochronologic units. Fact Sheet 2010-3059, July 2010. (2010). (http://pubs.usgs.gov/fs/2010/3059/)Google Scholar
Vandergast, A.G., Gillespie, R.G., and Roderick, G.K. Influence of volcanic activity on the population genetic structure of Hawaiian Tetragnatha spiders: fragmentation, rapid population growth and the potential for accelerated evolution. Molecular Ecology 13, (2004). 17291743.Google Scholar
Vázquez-Domínguez, E., and Arita, H.T. The Yucatan peninsula: biogeographical history 65 million years in the making. Ecography 33, (2010). 212219.Google Scholar
Vázquez-Miranda, H., Navarro-Sigüenza, A.G., and Omland, K.E. Phylogeography of the rufous-naped red (Camphylorhynchus rufinucha): speciation and hybridization in Mesoamerica. The Auk 126, (2009). 765778.CrossRefGoogle Scholar
Viland, J.C., and Henry, B. Late Jurassic deformation in Honduras. Proposals for a revised regional stratigraphy. Journal of South American Earth Sciences 9, (1996). 153160.Google Scholar
Vogel, T.A., Patino, L.C., Alvarado, G.E., and Gans, P.B. Silicic ignimbrites within the Costa Rican volcanic front: evidence for the formation of continental crust. Earth and Planetary Science Letters 226, (2004). 149159.Google Scholar
Wang, I.J., Crawford, A.J., and Bermingham, E. Phylogeography of the pygmy rain frog (Prismantis ridens) across the lowland wet forest of isthmian Central America. Molecular Phylogenetics and Evolution 47, (2008). 9921004.Google Scholar
Webb, S.D. Ecogeography and the Great American Interchange. Paleobiology 17, (1991). 266280.Google Scholar
Webb, S.D. The Great American Biotic Interchange: patterns and processes. Annals of the Missouri Botanical Garden 93, (2006). 245257.Google Scholar
Webb, D.S., and Perrigo, S.C. Late Cenozoic vertebrates from Honduras and El Salvador. Journal of Vertebrate Paleontology 4, (1984). 237254.Google Scholar
Weber, B., Iriondo, A., Premo, W.R., Hecht, L., and Schaaf, P. New insights into the history and origin of the southern Maya block, SE México: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif. International Journal of Earth Sciences 96, (2007). 253269.Google Scholar
White, R.A., and Harlow, D.H. Destructive upper-crustal earthquakes of Central America since 1900. Bulletin of the Seismology Society of America 83, (1993). 11151142.Google Scholar
Winker, K. Middle America, not Mesoamerica, is the accurate term for biogreography. The Condor 113, (2011). 56.CrossRefGoogle Scholar
Woodburne, M.O. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17, (2010). 245264.Google Scholar
Wüster, W., Ferguson, J.E., Quijada-Mascareñas, J.A., Pook, C.E., Salomao, M.DaG, and Thorpe, R.S. Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes, Viperidae: Crotalus durissus). Molecular Ecology 14, (2005). 10951108.Google Scholar
Zarza, E., Reynoso, V.H., and Emerson, B.C. Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species. Molecular Ecology 17, (2008). 32593275.Google Scholar
Zeh, J.A., Zeh, W., and Bonilla, M.M. Phylogeography of the harlequin beetle-riding pseudoscorpion and the rise of the Isthmus of Panama. Molecular Ecology 12, (2003). 27592769.Google Scholar
Supplementary material: File

Gutiérrez-García and Vázquez-Domínguez Supplementary Material

Supplementary Material

Download Gutiérrez-García and Vázquez-Domínguez Supplementary Material(File)
File 16.6 KB