Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T16:17:42.770Z Has data issue: false hasContentIssue false

Composition and consequences of the IntCal20 radiocarbon calibration curve

Published online by Cambridge University Press:  15 June 2020

Paula J. Reimer*
Affiliation:
14CHRONO Centre for Climate, the Environment and Chronology, Queen's University Belfast, BelfastBT7 1NN, UK
*
*Corresponding author email address: [email protected]

Abstract

Radiocarbon calibration is necessary to correct for variations in atmospheric radiocarbon over time. The IntCal working group has developed an updated and extended radiocarbon calibration curve, IntCal20, for Northern Hemisphere terrestrial samples from 0 to 55,000 cal yr BP. This paper summarizes the new datasets, changes to existing datasets, and the statistical method used for constructing the new curve. Examples of the effect of the new calibration curve compared to IntCal13 for hypothetical radiocarbon ages are given. For the recent Holocene the effect is minimal, but for older radiocarbon ages the shift in calibrated ages can be up to several hundred years with the potential for multiple calibrated age ranges in periods with higher-resolution data. In addition, the IntCal20 curve is used to recalibrate the radiocarbon ages for the glaciation of the Puget Lowland and to recalculate the advance rate. The ice may have reached its maximum position a few hundred years earlier using the new calibration curve; the calculated advance rate is virtually unchanged from the prior estimate.

Type
Review Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolphi, F., Muscheler, R., Friedrich, M., Güttler, D., Wacker, L., Talamo, S., Kromer, B., 2017. Radiocarbon calibration uncertainties during the last deglaciation: Insights from new floating tree-ring chronologies. Quaternary Science Reviews 170, 98108.CrossRefGoogle Scholar
Bard, E., Ménot, G., Rostek, F., Licari, L., Böning, P., Edwards, R.L., Cheng, H., Wang, Y., Heaton, T.J., 2013. Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian margins. Radiocarbon 55, 19992019.CrossRefGoogle Scholar
Beck, J.W., Richards, D.A., Edwards, R.L., Silverman, B.W., Smart, P.L., Donahue, D.J., Hererra-Osterheld, S., et al. , 2001. Extremely Large Variations of Atmospheric 14C Concentration During the Last Glacial Period. Science 292, 24532458.CrossRefGoogle ScholarPubMed
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Bronk Ramsey, C., 2017. OxCal Program, Version 4.3, Oxford Radiocarbon Accelerator Unit: University of Oxford.Google Scholar
Bronk Ramsey, C., Heaton, T.J., Schlolaut, G., Staff, R.A., Bryant, C.L., Brauer, A., Lamb, H.F., Marshall, M.H., Nakagawa, T., 2020. Reanalysis of the atmospheric radiocarbon calibration record from Lake Suigetsu. Radiocarbon 62, in press.Google Scholar
Butzin, M., Heaton, T.J., Köhler, P., Lohmann, G., 2020. A short note on marine reservoir age simulations used in IntCal20. Radiocarbon 62, in press.Google Scholar
Capano, M., Miramont, C., Guibal, F., Kromer, B., Tuna, T., Fagault, Y., Bard, E., 2018. Wood 14C Dating with AixMICADAS: Methods and Application to Tree ring Sequences from the Younger Dryas Event in the Southern French Alps. Radiocarbon 60, 5174.CrossRefGoogle Scholar
Capano, M., Miramont, C., Shindo, L., Guibal, F., Marschal, C., Kromer, B., Tuna, T., Bard, E., 2020. Onset of the Younger Dryas recorded with 14C at annual resolution in French subfossil trees. Radiocarbon 62, in press.Google Scholar
Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X., Li, X., 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640.CrossRefGoogle ScholarPubMed
Cheng, H., Edwards, R.L., Southon, J., Matsumoto, K., Feinberg, J.M., Sinha, A., Zhou, W., Li, H., Li, X., Xu, Y., 2018. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362, 12931297.CrossRefGoogle ScholarPubMed
Clague, J.J., Saunders, I.R., Roberts, M.C., 1988. Ice-free conditions in southwestern British Columbia at 16000 years BP. Canadian Journal of Earth Sciences 25, 938941.CrossRefGoogle Scholar
Clark, R.M., 1975. A calibration curve for radiocarbon dates. Antiquity 49, 251266.CrossRefGoogle Scholar
Dee, M.W., Brock, F., Harris, S.A., Ramsey, C.B., Shortland, A.J., Higham, T.F.G., Rowland, J.M., 2010, Investigating the likelihood of a reservoir offset in the radiocarbon record for ancient Egypt. Journal of Archaeological Science 37, 687693.CrossRefGoogle Scholar
Fahrni, S.M., Southon, J., Fuller, B.T., Park, J., Friedrich, M., Muscheler, R., Wacker, L., Taylor, R.E., 2020. Single-year German oak and Californian bristlecone pine 14C data at the beginning of the Hallstatt plateau from 856 BC to 626 BC. Radiocarbon 62, in press.Google Scholar
Friedrich, M., Remmele, S., Kromer, B., Hofmann, J., Spurk, M., Kaiser, K.F., Orcel, C., Küppers, M., 2004. The 12,460-year Hohenheim oak and pine tree ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions: Radiocarbon 46, 11111122.CrossRefGoogle Scholar
Friedrich, R., Kromer, B., Wacker, L., Olsen, J., Remmele, S., Lindauer, S., Land, A., Pearson, C., 2020. A new annual 14C dataset for calibrating the Thera eruption. Radiocarbon 62 in press.Google Scholar
Heaton, T.J., Bard, E., Hughen, K.A., 2013. Elastic tie-pointing—transferring chronologies between records via a Gaussian process. Radiocarbon 55, 19751997.CrossRefGoogle Scholar
Heaton, T.J., Blaauw, M., Blackwell, P.G., Bronk Ramsey, C., Reimer, P., Scott, E.M., 2020b. The IntCal20 approach to radiocarbon calibration curve construction: A new methodology using Bayesian splines and errors-in-variables. Radiocarbon 62, in press.Google Scholar
Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E.N., Bronk Ramsey, C., et al. , 2020a. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, in press.Google Scholar
Hoffmann, D.L., Beck, J.W., Richards, D.A., Smart, P.L., Singarayer, J.S., Ketchmark, T., Hawkesworth, C.J., 2010. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth and Planetary Science Letters 289, 110.CrossRefGoogle Scholar
Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., et al. , 2013. SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP. Radiocarbon 55, 18891903.CrossRefGoogle Scholar
Hogg, A., Heaton, T.J., Hua, Q., Bayliss, A., Blackwell, P.G., Boswijk, G., Ramsey, C.B., et al. , 2020. SHCAL20 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 62, in press.Google Scholar
Hogg, A., Southon, J., Turney, C., Palmer, J., Ramsey, C.B., Fenwick, P., Boswijk, G., Büntgen, U., Friedrich, M., Helle, G., 2016. Decadally resolved lateglacial radiocarbon evidence from New Zealand kauri. Radiocarbon 58, 709733.CrossRefGoogle Scholar
Hughen, K., Heaton, T.J., 2020. Updated Cariaco Basin 14C Calibration Dataset from 0–60k BP. Radiocarbon 62, in press.Google Scholar
Jull, A.T., Panyushkina, I., Miyake, F., Masuda, K., Nakamura, T., Mitsutani, T., Lange, T.E., Cruz, R.J., Baisan, C., Janovics, R., 2018. More Rapid 14C Excursions in the Tree-Ring Record: A Record of Different Kind of Solar Activity at About 800 BC? Radiocarbon 60, 12371248.CrossRefGoogle Scholar
Kaiser, K.F., Friedrich, M., Miramont, C., Kromer, B., Sgier, M., Schaub, M., Boeren, I., et al. , 2012. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute—an inventory. Quaternary Science Reviews 36, 7890.CrossRefGoogle Scholar
Klein, J., Lerman, J.C., Damon, P.E., Ralph, E.K., 1982. Calibration of Radiocarbon Dates: Tables Based on the Consensus Data of the Workshop on Calibrating the Radiocarbon Time Scale: Radiocarbon 24, 103150.CrossRefGoogle Scholar
Kromer, B., Manning, S.W., Kuniholm, P.I., Newton, M.W., Spurk, M., Levin, I., 2001. Regional 14CO2 Offsets in the Troposphere: Magnitude, Mechanisms, and Consequences. Science 294, 25292532.CrossRefGoogle ScholarPubMed
Kuitems, M., Plicht, J.v.d., Jansma, E., 2020. Wood from the Netherlands around the time of the Santorini eruption dated by dendrochronology and Radiocarbon. Radiocarbon 62, in press.Google Scholar
Miyake, F., Jull, A.J.T., Panyushkina, I.P., Wacker, L., Salzer, M., Baisan, C.H., Lange, T., Cruz, R., Masuda, K., Nakamura, T., 2017a. Large 14C excursion in 5480 BC indicates an abnormal sun in the mid-Holocene. Proceedings of the National Academy of Sciences 114, 881884.CrossRefGoogle Scholar
Miyake, F., Masuda, K., Nakamura, T., 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4.Google ScholarPubMed
Miyake, F., Masuda, K., Nakamura, T., Kimura, K., Hakozaki, M., Jull, A.J.T., Lange, T.E., et al. , 2017b. Search for Annual 14C Excursions in the Past. Radiocarbon 59, 315320.CrossRefGoogle Scholar
Miyake, F., Nagaya, K., Masuda, K., Nakamura, T., 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240242.CrossRefGoogle ScholarPubMed
Park, J., Southon, J., Fahrni, S., Creasman, P.P., Mewaldt, R., 2017. Relationship between solar activity and Δ14C peaks in AD 775, AD 994, and 660 BC. Radiocarbon 59, 11471156.CrossRefGoogle Scholar
Pearson, C.L., Brewer, P.W., Brown, D., Heaton, T.J., Hodgins, G.W., Jull, A.T., Lange, T., Salzer, M.W., 2018. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances 4, eaar8241.CrossRefGoogle ScholarPubMed
Pearson, C.L., Wacker, L., Bayliss, A., Brown, D.M., Salzer, M., Brewer, P.W., Bollhalder, S., Boswijk, G., Hodgins, G.W.L., 2020. Annual variation in atmospheric 14C between 1700 BC and 1480 BC. Radiocarbon 62, doi:10.1017/RDC.2020.14.Google Scholar
Porter, S.C., Swanson, T.W., 1998. Radiocarbon Age Constraints on Rates of Advance and Retreat of the Puget Lobe of the Cordilleran Ice Sheet during the Last Glaciation. Quaternary Research 50, 205213.CrossRefGoogle Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, M., et al. , 2020. The IntCal20 Northern Hemisphere radiocarbon calibration curve (0–55 cal ka BP). Radiocarbon 62, in press.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Brown, D.M., Buck, C.E., Edwards, R.L., Friedrich, M., 2013b. Selection and treatment of data for radiocarbon calibration: an update to the International Calibration (IntCal) criteria. Radiocarbon 55, 19231945.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013a. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
Reinig, F., Sookdeo, A., Esper, J., Friedrich, M., Guidobaldi, G., Helle, G., Kromer, B., et al. , 2020. Illuminating IntCal during the Younger Dryas. Radiocarbon 62, in press.Google Scholar
Schlolaut, G., Staff, R.A., Brauer, A., Lamb, H.F., Marshall, M.H., Ramsey, C.B., Nakagawa, T., 2018. An extended and revised Lake Suigetsu varve chronology from ~50 to ~10 ka BP based on detailed sediment micro-facies analyses. Quaternary Science Reviews 200, 351366.CrossRefGoogle Scholar
Scott, E.M., Naysmith, P., Cook, G.T., 2017. Why do we need 14C inter-comparisons?: The Glasgow-14C inter-comparison series, a reflection over 30 years. Quaternary Geochronology 43, 7282.CrossRefGoogle Scholar
Sookdeo, A., Kromer, B., Buentgen, U., Friedrich, M., Friedrich, R., Helle, G., Pauly, M., et al. 2020. Quality Dating: A well-defined protocol implemented at ETH for high-precision 14C dates tested on Late Glacial wood. Radiocarbon 62, in press.Google Scholar
Stuiver, M., Reimer, P.J., 1993. Extended C-14 Data-Base and Revised Calib 3.0 C-14 Age Calibration Program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Stuiver, M., Suess, H.E., 1966. On the relationship between radiocarbon dates and true sample ages. Radiocarbon 8, 534540.CrossRefGoogle Scholar
Telford, R.J., Heegaard, E., Birks, H.J.B., 2004, The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14, 296298.CrossRefGoogle Scholar
Turney, C.S.M., Fifield, L.K., Hogg, A.G., Palmer, J.G., Hughen, K., Baillie, M.G.L., Galbraith, R., et al. , 2010. The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the Last Glacial Interval (60,000–11,700 years ago). Quaternary Science Reviews 29, 36773682.CrossRefGoogle Scholar
Turney, C.S.M., Palmer, J., Ramsey, C.B., Adolphi, F., Muscheler, R., Hughen, K.A., Staff, R.A., Jones, R.T., Thomas, Z.A., Fogwill, C.J., 2016. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: Testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quaternary Science Reviews 137, 126134.CrossRefGoogle Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.CrossRefGoogle ScholarPubMed