Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T11:40:10.923Z Has data issue: false hasContentIssue false

Kinetic analysis of lipid soluble ions and carriers

Published online by Cambridge University Press:  17 March 2009

S. B. Hladky
Affiliation:
Department of Pharmacology, University of Cambridge, Tennis Court Rd., Cambridge CB2 1QJ

Extract

The advent of methods for forming and studying lipid bilayer membranes (Mueller et al. 1962; Hanai et al. 1964) opened the way for some fifteen years of intensive and productive study of the properties of lipid soluble ions and ion carriers. I expect that none will dissent from the view that Peter Läuger and his associates, including R. Benz and G. Stark, did more than any other research group to advance the study of the mechanism of the charge transfer. Between 1970 and 1981 they published more than 25 substantial contributions. Thus it is appropriate that this memorial issue should contain a short review of this subject. As I have the highest regard for their work I was very pleased to be asked to write such a chapter. There is little point in providing another general survey because Läuger's group published reviews at the end of this period (Benz et al. 1980; Läuger et al. 1981) and I also reviewed the field at length (Hladky, 1979a). Instead I would like to consider the three cornerstone papers of 1971, some of the difficulties that arose from those papers, how they were overcome, and three aspects of the description that are still incomplete.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, O. S. & Fuchs, M. (1975). Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Biophys. J. 15, 795830.CrossRefGoogle ScholarPubMed
Andersen, O. S., Feldberg, S., Nakadomari, H., Levy, S. & McLaughlin, S. (1978). Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys. J. 21, 3570.CrossRefGoogle ScholarPubMed
Benz, R. & Gisin, B. F. (1978). Influence of membrane structure on ion transport through lipid bilayer membranes. J. Membrane Biol. 40, 293314.CrossRefGoogle ScholarPubMed
Benz, R. & Läuger, P. (1976). Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique. J. Membrane Biol. 27, 171191.CrossRefGoogle ScholarPubMed
Benz, R. & Läuger, P. (1977). Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure. Biochim. biophys. Acta 468, 245258.CrossRefGoogle ScholarPubMed
Benz, R. & Stark, G. (1975). Kinetics of macrotetrolide-induced ion transport across lipid bilayer membranes. Biochim. biophys. Acta 382, 2740.CrossRefGoogle ScholarPubMed
Benz, R., Stark, G., Janko, K. & Läuger, P. (1973). Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature. J. Membrane Biol. 14, 339364.CrossRefGoogle ScholarPubMed
Benz, R., Gisin, B. F., Ting-Beall, H. P., Tosteson, D. C. & Läuger, P. (1976 a). Mechanism of ion transport through lipid bilayer-membranes mediated by peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro)3. Biochim. biophys. Acta 455, 665684.CrossRefGoogle Scholar
Benz, R., Läuger, P. & Janko, K. (1976 b). Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. Biochim. biophys. Acta 455, 701720.CrossRefGoogle ScholarPubMed
Benz, R., Fröhlich, O. & Läuger, P. (1977). Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Biochim. biophys. Acta 464, 465481.CrossRefGoogle ScholarPubMed
Benz, R., Cros, D., Janko, K., Läuger, P. & Stark, G. (1980). Effects of lipid structure on the kinetics of carrier-mediated ion transport. Acta Physiol. scand. 481, 4752.Google ScholarPubMed
Brock, W., Stark, G. & Jordan, P. C. (1981). A laser-temperature-jump method for the study of the rate of transfer of hydrophobic ions and carriers across the interface of thin lipid membranes. Biophys. Chem. 13, 329348.CrossRefGoogle Scholar
Bruner, L. J. (1975). The interaction of hydrophobic ions with lipid bilayer membranes. J. Membrane Biol. 22, 125141.CrossRefGoogle ScholarPubMed
Feldberg, S. W. & Kissel, G. (1975). Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers. J. Membrane Biol. 20, 269300.CrossRefGoogle ScholarPubMed
Hanai, T., Haydon, D. A. & Taylor, J. (1964). An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions. Proc. R. Soc. A 281, 377391.Google Scholar
Haydon, D. A. & Hladky, S. B. (1972). Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5 (2), 187282.CrossRefGoogle ScholarPubMed
Hladky, S. B. (1975 a). Tests of the carrier model for ion transport by nonactin and trinactin. Biochim. biophys. Acta 375, 327349.CrossRefGoogle ScholarPubMed
Hladky, S. B. (1975 b). Steady-state ion transport by nonactin and trinactin. Biochim. biophys. Acta 375, 350362.CrossRefGoogle ScholarPubMed
Hladky, S. B. (1979 a). The carrier mechanism. Curr. Top. Membranes Trans. 12, 53164.CrossRefGoogle Scholar
Hladky, S. B. (1979 b). Ion transport and displacement currents with membrane-bound carriers. J. Membrane Biol. 46, 213237.CrossRefGoogle ScholarPubMed
Jordan, P. C. (1979). Kinetics of transport of hydrophobic ions through lipid membranes including diffusion polarization in the aqueous phase. Biophys. Chem. 10, 273287.CrossRefGoogle ScholarPubMed
Ketterer, B., Neumcke, B. & Läuger, P. (1971). Transport mechanism of hydrophobic ions through lipid bilayer membranes. J. Membrane Biol. 5, 225245.CrossRefGoogle ScholarPubMed
Knoll, W. & Stark, G. (1975). An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes. J. Membrane Biol. 25, 249270.CrossRefGoogle ScholarPubMed
Läuger, P., Benz, R., Stark, G., Bamberg, E., Jordan, P. C., Fahr, A. & Brock, W. (1981). Relaxation studies of ion transport systems in lipid bilayer membranes. Q. Rev. Biophys. 14 (4), 513598.CrossRefGoogle ScholarPubMed
LeBlanc, O. H. Jr. (1969). Tetraphenylborate conductance through lipid bilayer membranes. Biochim. biophys. Acta 193, 350360.CrossRefGoogle Scholar
Liberman, Ye. A. & Topaly, V. P. (1969). Permeability of bimolecular phospholipid membranes for fat soluble ions. Biophysics 14, 477487.Google ScholarPubMed
Markin, V. S., Krishtalik, L. I., Liberman, Ye. A. & Topaly, V. P. (1969). Mechanism of conductivity of artificial phospholipid membranes in presence of ion carriers. Biofizika 14, 256264.Google ScholarPubMed
Markin, V. S., Grigor'ev, P. A. & Yermishkin, L. N. (1971). Forward passage of ions across lipid membranes. I. Mathematical model. Biofizika 16, 10111018.Google Scholar
Mueller, P., Rudin, D. O., Tien, H. T. & Wescott, W. C. (1962). Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature, Lond. 194, 979981.CrossRefGoogle ScholarPubMed
Stark, G. & Benz, R. (1971). The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin. J. Membrane Biol. 5, 133153.CrossRefGoogle ScholarPubMed
Stark, G., Ketterer, B., Benz, R. & Lauger, P. (1971). The rate constants of valinomycin-mediated ion transport through lipid membranes. Biophys. J. 11, 981994.CrossRefGoogle ScholarPubMed
Szabo, G., Eisenman, G. & Ciani, S. (1969). The effects of macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membrane Biol. 1, 346–382.CrossRefGoogle ScholarPubMed
Tsien, R. Y. & Hladky, S. B. (1982). Ion repulsion within membranes. Biophys. J. 39, 4956.CrossRefGoogle ScholarPubMed