Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T11:41:50.188Z Has data issue: false hasContentIssue false

Multiple Supernova Explosions in a Forming Galaxy

Published online by Cambridge University Press:  05 March 2013

Masao Mori*
Affiliation:
Institute of Natural Sciences, Senshu University, Kawasaki, Kanagawa, 214-8580, Japan
Masayuki Umemura
Affiliation:
Center for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
Andrea Ferrara
Affiliation:
SISSA/International School for Advanced Studies, 34014 Trieste, Italy
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ultra-high resolution hydrodynamic simulations using 10243 grid points are performed of a very large supernova burst in a forming galaxy, with properties similar to those inferred for Lyman Break Galaxies (LBGs). Explosions produce kpc-sized expanding hot bubbles enclosed by cool, dense shells, and the engulfed gas is polluted with freshly-synthesised heavy elements. We show that the resultant inhomogeneous mixing produces a large spread ([Fe/H] ≈ –1 to –5) of metallicities, which affects the subsequent galactic chemical evolution and leaves its imprint on metal-poor stars. By combining a spectral synthesis model with the numerical results, we predict Lyα emission from such galaxy at z = 3. We find that the simulated galaxy, whose peak star formation rate is ≈200 M yr–1, produces a Lyα luminosity Lα = 9.7 × 1042 erg s–1. This value favorably matches the observed one, but some discrepancies are left for the Lyα line width, the metallicity, and X-ray properties. Since the results of the simulation is applicable only at the very early epoch of the galaxy formation, the metallicity is still lower than that of LBGs. However, the analysis presented here demonstrates a way to enable a systematic comparison with observational data.

It is concluded that LBGs are optimal objects to scrutinise the early self-enrichment in forming galaxies. In the future, the predicted bubbly structure carved by SNe may be directly detected by high resolution observations with JWST.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Ajiki, M., et al. 2002, ApJ, 576, L25 Google Scholar
Argast, D., Samland, M., Gerhard, O. E., & Thielemann, F.-K. 2000, A&A, 356, 873 Google Scholar
Brandt, W. N., Hornschemeier, A. E., Schneider, D. P., Alexander, D. M., Bauer, F. E., Garmire, G. P., & Vignali, C. 2001, ApJ, 558, L5 CrossRefGoogle Scholar
Bromm, V., Ferrara, A., Coppi, P. S., & Larson, R. B. 2001, MNRAS, 328, 969 Google Scholar
Christlieb, N. et al. 2002, Natur, 419, 904 Google Scholar
Dawson, S., Spinrad, H., Stern, D., Dey, A., van Breugel, W., de Vries, W., & Reuland, M. 2002, ApJ, 570, 92 Google Scholar
Dey, A., Spinrad, H., Stern, D., Graham, J. R., & Chaffee, F. H. 1998, ApJ, 498, L93 Google Scholar
Ferguson, H. C., Dickinson, M., & Papovich, C. 2002, ApJ, 569, L65 Google Scholar
Ferrara, A., Pettini, M., & Shchekinov, Y. 2000, MNRAS, 319, 539 CrossRefGoogle Scholar
Fujita, S. S., et al. 2003, AJ, 125, 13 CrossRefGoogle Scholar
Giavalisco, M. 2002, ARA&A, 40, 579 Google Scholar
Giavalisco, M., Steidel, C. C., & Macchetto, F. D. 1996, ApJ, 470, 189 Google Scholar
Hu, E. M., Cowie, L. L., McMahon, R. G., Capak, P., Iwamuro, F., Kneib, J.-P., Maihara, T., & Motohara, K. 2002, ApJ, 568, L75 Google Scholar
Kodaira, K., et al. 2003, PASJ, 55, L17 CrossRefGoogle Scholar
McWilliam, A., Preston, G. W., Sneden, C., & Searle, L. 1995, AJ, 109, 2757 Google Scholar
Mori, M., Ferrara, A., & Madau, P. 2002, ApJ, 571, 40 Google Scholar
Mori, M., Yoshii, Y., & Nomoto, K. 1999, ApJ, 511, 585 CrossRefGoogle Scholar
Mori, M., Yoshii, Y., Tsujimoto, T., & Nomoto, K. 1997, ApJ, 478, L21 Google Scholar
Nakamura, F., & Umemura, M. 2001, ApJ, 548, 19 Google Scholar
Nandra, K., Mushotzky, R. F., Arnaud, K., Steidel, C. C., Adelberger, K. L., Gardner, J. P., Teplitz, H. I., & Windhorst, R. A. 2002, ApJ, 576, 625 Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 CrossRefGoogle Scholar
Omukai, K. 2000, ApJ, 534, 809 Google Scholar
Papovich, C., Dickinson, M., & Ferguson, H. C. 2001, ApJ, 559, 620 Google Scholar
Pei, Y. C. 1992, ApJ, 395, 130 Google Scholar
Pettini, M., Shapley, A. E., Steidel, C. C., Cuby, J., Dickinson, M., Moorwood, A. F. M., Adelberger, K. L., & Giavalisco, M. 2001, ApJ, 554, 981 Google Scholar
Rhoads, J. E., Malhotra, S., Dey, A., Stern, D., Spinrad, H., & Jannuzi, B. T. 2000, ApJ, 545, 85 CrossRefGoogle Scholar
Ryan, S. G., Norris, J. E., & Beers, T. C. 1996, ApJ, 471, 254 Google Scholar
Shapley, A. E., Steidel, C. C., Adelberger, K. L., Dickinson, M., Giavalisco, M., & Pettini, M. 2001, ApJ, 562, 95 Google Scholar
Shapley, A. E., Steidel, C. C., Pettini, M., & Adelberger, K. L. 2003, ApJ, 588, 65 CrossRefGoogle Scholar
Schneider, R., Ferrara, A., Natarajan, P., & Omukai, K. 2002, ApJ, 571, 30 CrossRefGoogle Scholar
Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., & Giavalisco, M. 2000, ApJ, 532, 170 Google Scholar
Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1 Google Scholar
Steidel, C. C., Giavalisco, M., Dickinson, M., & Adelberger, K. L. 1996, AJ, 112, 352 Google Scholar
Sutherland, R. S., & Dopita, M. A. 1993, ApJS, 88, 253 CrossRefGoogle Scholar
Teplitz, H. I., et al. 2000, ApJ, 533, L65 Google Scholar
Tsujimoto, T., & Shigeyama, T. 1998, ApJ, 508, L151 CrossRefGoogle Scholar
Tsujimoto, T., Nomoto, K., Yoshii, Y., Hoshimoto, M., Yanagida, S., & Thielemann, F.-K. 1995, MNRAS, 277, 945 Google Scholar
Weymann, R. J., Stern, D., Bunker, A., Spinrad, H., Chaffee, F. H., Thompson, R. I., & Storrie-Lombardi, L. J. 1998, ApJ, 505, L95 CrossRefGoogle Scholar