Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T10:07:19.406Z Has data issue: false hasContentIssue false

Luminosity Evolution of Double Radio Sources

Published online by Cambridge University Press:  05 March 2013

Joel C. Carvalho
Affiliation:
Departamento de Fisica, UFRN, C.P. 1661, CEP 59072-970, Natal, RN, Brazil. [email protected]
Christopher P. O'Dea
Affiliation:
Departamento de Fisica, UFRN, C.P. 1661, CEP 59072-970, Natal, RN, Brazil. [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have recently developed a detailed analytical model for powerful radio sources based on the results of a series of 2-D numerical hydrodynamical simulations. Here we make use of the model results to investigate the radio source luminosity evolution. Changes in the radio spectrum due to radiation losses were calculated in two different scenarios for energy gains/losses: Kardashev–h;Pacholczyk (KP) and ‘continuous injection’ (CI). The magnetic field was calculated in two limiting cases: (1) assuming equipartition of energy between relativistic particles and fields and (2) magnetic flux conservation inside the cocoon. The effect of the surrounding medium was taken into account by considering three different ambient density profiles. The evolutionary tracks were plotted in a power–diameter (P-D) diagram and compared with the predictions of self-similar models. In general, the evolutionary tracks cannot be represented by a simple power law and have a complex form that is most probably the result of the nonself-similar evolution of the source.

Type
GPS/CSS Workshop
Copyright
Copyright © Astronomical Society of Australia 2003

References

Alexander, P. 2000, MNRAS, 319, 8 Google Scholar
Baldwin, J. E. 1982, In Extragalactic Radio Sources, eds D. S. Heeschen & C. M. Wade (Dordrecht: Reidel), 21 Google Scholar
Begelman, M. C. 1996, in Cygnus A: Study of a Radio Galaxy, eds C. L. Carilli & D. A. Harris (Cambridge University Press), 209 Google Scholar
Begelman, M. C., & Cioffi, D. F. 1989, ApJ, 345, L21 CrossRefGoogle Scholar
Bicknell, G. V., Dopita, M. A., & O'Dea, C. P. 1997, ApJ, 485, 112 CrossRefGoogle Scholar
Blundell, K. M., Rawlings, S., & Willott, C. J. 1999, AJ, 117, 677 CrossRefGoogle Scholar
Carvalho, J. C., & O'Dea, C. P. 2002a (Paper I), ApJS, 141, 337.Google Scholar
Carvalho, J. C., & O'Dea, C. P. 2002b (Paper II), ApJS, 141, 371.Google Scholar
Carvalho, J. C., & O'Dea, C. P. 2003 (Paper III), in preparation.Google Scholar
Cioffi, D. F., & Blondin, J. M. 1992, ApJ, 392, 458 Google Scholar
Daly, R. A. 1990, ApJ, 355, 416 Google Scholar
Falle, S. A. E. G. 1991, MNRAS, 250, 581 Google Scholar
Fanti, C., Fanti, R., Dallacasa, D., Schilizzi, R. T., Spencer, R. E., & Stanghellini, C. 1995, A&A, 302, 317 Google Scholar
Kaiser, C. R., & Alexander, P. 1997, MNRAS, 286, 215 Google Scholar
Kaiser, C. R., Dennett-Thorpe, J., & Alexander, P. 1997, MNRAS, 292, 723 Google Scholar
Loken, C., Burns, J. O., Clarke, D. A., & Norman, M. L. 1992, ApJ, 392, 54 Google Scholar
Nath, B. B. 1995, MNRAS, 274, 208 Google Scholar
O'Dea, C. P., & Baum, S. A. 1997, AJ, 113, 148 Google Scholar
Readhead, A. C. S., Taylor, G. B., Pearson, T. J., & Wilkinson, P. N. 1996, ApJ, 460, 634 CrossRefGoogle Scholar
Snellen, I. A. G., Schilizzi, R. T., Miley, G. K., de Bruyn, A. G., & Bremer, M. N. 2000, MNRAS, 319, 445 Google Scholar