Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-03T23:56:36.376Z Has data issue: false hasContentIssue false

Pteridophyte evolutionary biology: the electrophoretic approach

Published online by Cambridge University Press:  05 December 2011

Christopher H. Haufler
Affiliation:
Department of Botany, University of Kansas, Lawrence, KS 66045, U.S.A.
Get access

Synopsis

While only in its infancy, the application of electrophoretic analysis in studying the evolutionary biology of pteridophytes is proving to be of considerable value. Since the technique identifies subtle differences in protein structure, it can generate an improved picture of the genetic composition of organisms. To date electrophoresis is (1) providing us with new information about the structure of the pteridophyte genome, (2) interfacing well with laboratory studies of breeding system mechanisms to indicate that some pteridophytes are predominantly outcrossing species, and (3) generating genome-specific markers for detecting hybrids and analysing patterns of evolution. Electrophoretic data suggest that species of Bommeria are very distinct from one another and may not be congeneric. Further, enzyme characters indicate that the sexual Bommeria species have maintained a mechanism to promote outcrossing in populations, in spite of the limitations that this breeding system places on colonising ability. In Cystopteris, electrophoretic markers are of value in deciphering species relationships and origins, especially among neopolyploid taxa. The indication in Cystopteris that extant diploids are outcrossing may help to explain the complex systematic patterns that currently exist within and among its taxa. Further investigations may demonstrate that similar mechanisms are prevalent among other systematically challenging ferns and fern allies.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, A. H. D. 1979. Enzyme polymorphism in plant populations. Theoret. Pop. Biol. 15, 142.Google Scholar
Chapman, R. H., Klekowski, E. J. and Selander, R. K. 1979. Homoeologous heterozygosity and recombination in the fern Pteridium aquilinwn. Science, N.Y. 204, 12071209.Google Scholar
Cooper-Driver, G. A. 1980. The role of flavonoids and related compounds in fern systematics. Bull. Torrey Bot. Club 107, 116127.Google Scholar
Cooper-Driver, G. A. and Haufler, C. H. 1983. The changing role of chemistry in fern classification. Br. Fern Gaz. 12, 283294.Google Scholar
Gastony, G. J. and Darrow, D. C. 1983. Chloroplastic and cytosolic isozymes of the homosporous fern Athyrium filix-femina L. Am. J. Bot. 70, 14091415.Google Scholar
Gastony, G. J. and Darrow, D. C. and Gottlieb, L. D. 1982. Evidence for genetic heterozygosity in a homosporous fern. Am. J. Bot. 69, 634637.Google Scholar
Giannasi, D. E. 1974. Phytochemical aspects of fern systematics. Ann. Mo. Bot. Gdn 61, 368378.Google Scholar
Gottlieb, L. D. 1971. Gel electrophoresis: new approach to the study of evolution. Bioscience 21, 939944.Google Scholar
Gottlieb, L. D. 1981a. Electrophoretic evidence and plant populations. Prog. Phytochem. 7, 146.Google Scholar
Gottlieb, L. D. 1981b. Gene numbers in species of Astereae that have different chromosome numbers. Proc. Natn. Acad. Sci. U.S.A. 78, 37263729.Google Scholar
Gottlieb, L. D. 1982. Conservation and duplication of isozymes in plants. Science, N.Y. 216, 373380.Google Scholar
Hamrick, J. L., Linhart, Y. B. and Mitton, J. B. 1979. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. A. Rev. Ecol. Syst. 10, 173200.CrossRefGoogle Scholar
Haufler, C. H. 1979. A biosystematic revision of Bommeria. J. Arnold Arbor. 60, 445476.Google Scholar
Haufler, C. H. 1985. Enzyme variability and modes of evolution in Bommeria (Pteridaceae). Syst. Bot. 10, 92104.Google Scholar
Haufler, C. H. and Gastony, G. J. 1978. Antheridiogen and the breeding system in the fern genus Bommeria. Can. J. Bot. 56, 15941601.Google Scholar
Haufler, C. H. and Ranker, T. A. 1985. Differential antheridiogen response and evolutionary mechanisms in Cystopteris. Am. J. Bot., in press.Google Scholar
Haufler, C. H. and Soltis, D. E. 1984. Obligate outcrossing in a homosporous fern: field confirmation of a laboratory prediction. Am. J. Bot. 71, 878881.Google Scholar
Haufler, C. H. and Soltis, D. E. 1983. Diploidy in ferns: a general phenomenon? Am. J. Bot. 70, No. 5, Pt. 2, 93.Google Scholar
Hedrick, P. W. 1971. A new approach to measuring genetic similarity. Evolution 25, 276280.Google Scholar
Johnson, G. B. 1977. Assessing electrophoretic similarity: the problem of hidden heterogeneity. A. Rev. Ecol. Syst. 8, 309328.Google Scholar
Kelley, W. A. and Adams, R. P. 1977. Preparation of extracts from Juniper leaves for electrophoresis. Phytochem. 16, 513516.Google Scholar
Klekowski, E. J. 1969. Reproductive biology of the Pteridophyta. II. Theoretical considerations. Bot. J. Linn. Soc. 62, 347359.Google Scholar
Klekowski, E. J. 1973. Genetic load in Osmunda regalis populations. Am. J. Bot. 60, 146154.Google Scholar
Klekowski, E. J. 1979. The genetics and reproductive biology of ferns. In The Experimental Biology of Ferns, ed. Dyer, A. F., pp. 133170. London: Academic Press.Google Scholar
Klekowski, E. J. 1984. Mutational load in clonal plants: a study of two fern species. Evolution 38, 417426.Google Scholar
Klekowski, E. J. 1985. Mutations, apical cells and vegetative reproduction. Proc. Roy. Soc. Edinb. 86B, 6773.Google Scholar
Klekowski, E. J. and Baker, H. G. 1966. Evolutionary significance of polyploidy in the Pteridophyta. Science, N.Y. 153, 305307.CrossRefGoogle Scholar
Lellinger, D. B. 1981. Notes on North American ferns. Am. Fern J. 71, 9094.Google Scholar
Lloyd, R. M. 1974. Reproductive biology and evolution in the Pteridophyta. Ann. Mo. Bot. Gdn 61, 318331.Google Scholar
Löve, Á. and Kjellqvist, E. 1972. Cytotaxonomy of Spanish plants. I. Introduction. Pteridophyta and Gymnospermae. Lagascalia 2, 2335.Google Scholar
Lovis, J. D. 1977. Evolutionary patterns and processes in ferns. Adv. Bot. Res. 4, 229415.Google Scholar
Manton, I. 1950. Problems of Cytology and Evolution in the Pteridophyta. London: Cambridge Univ. Press.Google Scholar
Markert, C. L. and Moller, F. 1959. Multiple forms of enzymes: tissue ontogenetic and species-specific patterns. Proc. Natn. Acad. Sci. U.S.A. 45, 753763.Google Scholar
Moran, R. C. 1982. Cystopteris × illinoensis: a new natural hybrid fern. Am. Fern J. 72, 4144.Google Scholar
Moran, R. C. 1983a. Cystopteris tenuis (Michx.) Desv.: a poorly understood species. Castanea 48, 218223.Google Scholar
Moran, R. C. 1983b. Cystopteris × wagneri: a new naturally occurring hybrid between C. × tennesseensis and C. tenuis. Castanea 48, 224229.Google Scholar
Nei, M. 1972. Genetic distance between populations. Am. Nat. 106, 283292.Google Scholar
Rogers, J. S. 1972. Measures of genetic similarity and genetic distance. Studies in Genetics VII (Univ. Texas Publ. 7213), 145153.Google Scholar
Schneller, J. J. 1981. Evidence for intergeneric incompatibility in ferns. Pl. Syst. Evol. 137, 4556.Google Scholar
Soltis, D. E., Haufler, C. H. and Gastony, G. J. 1980. Detecting enzyme variation in the fern genus Bommeria: an analysis of methodology. Syst. Bot. 5, 3038.Google Scholar
Soltis, D. E., Haufler, C. H. Darrow, D. C. and Gastony, G. J. 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 927.Google Scholar
Swain, T. and Cooper-Driver, G. 1973. Biochemical systematics in the Filicopsida. Bot. J. Linn. Soc. 67 (suppl. 1), 111134.Google Scholar
Vida, G. 1974. Genome analysis of the European Cystopteris fragilis complex. I. Tetraploid taxa. Ada Bot. Acad. Sci. Hung. 20, 181192.Google Scholar
Wagner, W. H. and Wagner, F. S. 1980. Polyploidy in pteridophytes. In Polyploidy: Biological Relevance, ed. Lewis, W. H., pp. 199214. New York: Plenum Press.Google Scholar
Weeden, N. F. and Gottlieb, L. D. 1979. Distinguishing allozymes and isozymes of phosphoglucoiso-merase by electrophoretic comparisons of pollen and somatic tissues. Biochem. Genet. 17, 287296.Google Scholar