Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T12:58:38.084Z Has data issue: false hasContentIssue false

VI.—Neumann-Series Solutions of the Ellipsoidal Wave Equation*

Published online by Cambridge University Press:  14 February 2012

Synopsis

The ellipsoidal wave equation is the name given to the ordinary differential equation which arises when the wave equation (Helmholtz equation) is separated in ellipsoidal co-ordinates. In this paper, solutions of the equation are expressed as Neumann series (series of Bessel functions of increasing order).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Arscott, F. M., 1956. “Perturbation Solutions of the Ellipsoidal Wave Equation”, Quart. J. Math., 7, 161174.CrossRefGoogle Scholar
Arscott, F. M., 1959. “A New Treatment of the Ellipsoidal Wave Equation”, Proc. Lond. Math. Soc., 9, 2150.CrossRefGoogle Scholar
Arscott, F. M., 1962. “High-frequency Approximations to Ellipsoidal Wave Functions”, Math. Res. Center, Univ. Wis., Rep. 338.Google Scholar
Campbell, R., 1949. “Sur la Vibration d'un Haut-parleur Elliptique”, C. R. Acad. Sci., Paris, 228, 970972.Google Scholar
Erdélyi, A., et al., 1955. Higher Transcendental Functions, Vol. III. McGraw-Hill, New York.Google Scholar
Malurkar, S. L., 1935 a. “Ellipsoidal Wave Functions“, Ind. J. Phys., 9, 4580.Google Scholar
Malurkar, S. L., 1935 b. “Continued Fractions Associated with Ellipsoidal Wave Functions”, Ind. J. Phys., 9, 251254.Google Scholar
Moglich, F., 1927. “Beugungserscheinungen an Körpern von Ellipsoidischer Gestalt”, Ann. Phys. Lpz., 83, 609734.CrossRefGoogle Scholar