Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T21:30:46.926Z Has data issue: false hasContentIssue false

Whole-body fuel selection: ‘reproduction’

Published online by Cambridge University Press:  28 February 2007

John J. Robinson
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Michael E. Symonds
Affiliation:
The School of Animal and Microbial Sciences, University of Reading, Whiteknights, PO Box 228, Reading RG6 2AJ
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Alexander, G. (1964). Studies on the placenta of the sheep (Ovis aries L.). Placental size. Journal of Reproduction and Fertility 7, 289305.CrossRefGoogle ScholarPubMed
Alexander, G. (1979). Cold thermogenesis. In International Review of Physiology – Environmental Physiology III, vol. 20, pp. 43155 [Robertson, D., editor]. Baltimore: University Park Press.Google Scholar
Avery, B., Madison, V. & Greve, T. (1991). Sex and development in bovine in vitro fertilized embryos. Theriogenology 35, 953963.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1992). The effect of nutrition of the fetus and neonate on cardiovascular disease in adult life. Proceedings of the Nutrition Society 51, 135144.CrossRefGoogle ScholarPubMed
Bassett, J. M. (1995). Glucose and fetal growth derangement. In Fetus and Neonate, vol. 3 Growth [Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., editors]. Cambridge: Cambridge University Press (In the Press).Google Scholar
Bassett, J. M., Hanson, C. & Weeding, C. M. (1989). Metabolic and cardiovascular changes during prolonged ritodrine infusion in fetal lambs. Obstetrics and Gynaecology 73, 117122.Google ScholarPubMed
Bassett, J. M. & Madill, D. (1974). Influence of prolonged glucose infusions on plasma insulin and growth hormone concentrations of foetal lambs. Journal of Endocrinology 62, 299309.CrossRefGoogle ScholarPubMed
Bassett, J. M., Madill, D., Nicol, D. H. & Thorburn, G. D. (1973). Further studies on the regulation of insulin release in foetal and post-natal lambs: the role of glucose as a physiological regulator of insulin release in utero. In Foetal and Neonatal Physiology, Sir Joseph Barcroft Centenary Symposium, pp. 351359 [Comline, R. S., Cross, K. W., Dawes, G. S. and Nathanielsz, P. W., editors]. Cambridge: Cambridge University Press.Google Scholar
Bassett, J. M. & Symonds, M. E. (1993). Effects of prolonged ritodrine or adrenaline administration on brown adipose tissue development in fetal lambs. Journal of Physiology 459, 325P.Google Scholar
Battaglia, F. C. (1992). New concepts in fetal and placental amino acid metabolism. Journal of Animal Science 70, 32583263.CrossRefGoogle ScholarPubMed
Battaglia, C., Artini, P. G., D'Ambrogio, G., Galli, P. A., Segre, A. & Genazzani, A. R. (1992). Maternal hyperoxygenation in the treatment of intrauterine growth retardation. American Journal of Obstetrics and Gynecology 167, 430435.CrossRefGoogle ScholarPubMed
Battaglia, F. C. & Meschia, G. (1978). Principal substrates of fetal metabolism. Physiological Reviews 58, 499527.CrossRefGoogle ScholarPubMed
Bekedam, D. J., Mulder, E. J. H., Snijders, R. J. M. & Visser, G. H. A. (1991). The effects of maternal hyperoxia on fetal breathing movements, body movements and heart rate variation in growth retarded fetuses. Early Human Development 27, 223232.CrossRefGoogle ScholarPubMed
Bell, A. W. (1986). Efficiency of prenatal growth and the heat increment of pregnancy. Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, pp. 6467. New York: Cornell University.Google Scholar
Bell, A. W. (1992). Foetal growth and its influence on postnatal growth and development. In The Control of Fat and Lean Deposition, pp. 111127 [Boorman, K. N., Buttery, P. J. and Lindsay, D. B., editors]. Oxford: Butterworth-Heinemann Ltd.CrossRefGoogle Scholar
Bell, A. W., Battaglia, F. C. & Meschia, G. (1987). Relation between metabolic rate and body size in the ovine fetus. Journal of Nutrition 117, 11811186.CrossRefGoogle ScholarPubMed
Bell, A. W., Kennaugh, J. M., Battaglia, F. C., Makowski, E. L. & Meschia, G. (1986). Metabolic and circulating studies of fetal lamb at mid-gestation. American Journal of Physiology 250, E538E544.Google Scholar
Berthon, D., Herpin, P., Duchamp, C., Dauncey, M. J. & Le Dividich, J. (1993). Modification of thermogenic capacity in neonatal pigs by changes in thyroid status during late gestation. Journal of Developmental Physiology 13, 253261.Google Scholar
Bishonga, C., Robinson, J. J., McEvoy, T. G., Aitken, R. P., Findlay, P. A. & Robertson, I. (1994). The effects of excess rumen degradable protein in ewes on ovulation rate, fertilization and embryo survival in vivo and during in vitro culture. British Society of Animal Production Jubilee Winter Meeting, Paper no. 81. Edinburgh:British Society of Animal Production.Google Scholar
Blaxter, K. L. (1989). Energy Metabolism in Animals and Man. Cambridge: Cambridge University Press.Google Scholar
Boyd, R. D. H., D'Souza, S. W. & Sibley, C. P. (1994). Placental transfer. In Early Fetal Growth and Development, pp. 211221 [Ward, R. H. T., Smith, S. K. and Donnai, D., editors]. London: RCOG Press.Google Scholar
Brody, S. (1945). Bioenergetics and Growth. New York: Reinhold.Google Scholar
Chard, T. (1994). Insulin-like growth factors and their binding proteins in the control of human fetal growth. In Early Fetal Growth and Development, pp. 293308 [Ward, R. H. T., Smith, S. K. and Donnai, D., editors]. London: RCOG Press.Google Scholar
Charlton, V. & Johengen, M. (1985). Effects of intra-uterine nutritional supplementation on fetal growth retardation. Biology of the Neonate 48, 125142.CrossRefGoogle Scholar
Charlton, V. & Johengen, M. (1987). Fetal intravenous nutritional supplementation ameliorates the development of embolization induced growth retardation in sheep. Pediatric Research 22, 5561.CrossRefGoogle ScholarPubMed
Christensson, K., Siles, C., Cabrera, T., Belaustequi, A., De La Fuente, P., Lagercrantz, H., Puyol, P. & Winberg, J. (1993). Lower body temperatures in infants delivered by caesarean section than vaginally delivered infants. Acta Paediatrica 82, 128131.CrossRefGoogle ScholarPubMed
Clarke, L., Darby, C. J., Lomax, M. A. & Symonds, M. E. (1994). Effect of ambient temperature during the first day of life on thermoregulation in lambs delivered by cesarean section. Journal of Applied Physiology 76, 14811488.CrossRefGoogle Scholar
Dalinghaus, M., Rudolph, C. D. & Rudolph, A. M. (1991). Effects of maternal fasting on hepatic gluconeogenesis and glucose metabolism in fetal lambs. Journal of Developmental Physiology 16, 267275.Google ScholarPubMed
De Chiara, T. M., Efstratiadis, A. & Robertson, E. J. (1992). A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 7880.CrossRefGoogle Scholar
Dreiling, C. E., Carman, F. S. III & Brown, D. E. (1991). Maternal endocrine and fetal metabolic responses to heat stress. Journal of Dairy Science 74, 312327.CrossRefGoogle ScholarPubMed
Edwards, C. R. W., Benediktsson, R., Lindsay, R. S. & Seckl, J. R. (1993). Dysfunction of placental glucocorticoid barrier: link between fetal environment and adult hypertension? Lancet 341, 355357.CrossRefGoogle ScholarPubMed
Faichney, G. J. & White, G. A. (1987). Effects of maternal nutritional status on fetal and placental growth and on fetal urea synthesis in sheep. Australian Journal of Biological Sciences 40, 365377.CrossRefGoogle ScholarPubMed
Farin, P. W., Farin, C. E. & Yang, L. (1994). In vitro production of bovine embryos is associated with altered fetal development. Theriogenology 41, 193.CrossRefGoogle Scholar
Ferrell, C. L. & Reynolds, L. P. (1992). Uterine and umbilical blood flows and net nutrient uptake by fetuses and uteroplacental tissues of cows gravid with either single or twin fetuses. Journal of Animal Science 70, 426433.CrossRefGoogle ScholarPubMed
Forsyth, I. A. (1986). Variation among species in the endocrine control of mammary growth and function: the roles of prolactin, growth hormone, and placental lactogen. Journal of Dairy Science 69, 886903.CrossRefGoogle ScholarPubMed
Fowden, A. L. (1989). The role of insulin in prenatal growth. Journal of Developmental Physiology 12, 173182.Google ScholarPubMed
Fowden, A. L., Harding, R., Ralph, M. M. & Thorburn, G. D. (1989). Nutritional control of respiratory and other muscular activities in relation to prostaglandin E in the fetal sheep. Journal of Developmental Physiology 11, 253262.Google ScholarPubMed
Harding, J. E., Liu, L., Evans, P. C. & Gluckman, P. D. (1994). Insulin-like growth factor-1 alters feto-placental protein and carbohydrate metabolism in fetal sheep. Endocrinology 134, 15091514.CrossRefGoogle ScholarPubMed
Harding, J. E., Owens, J. A. & Robinson, J. S. (1992). Should we try to supplement the growth retarded fetus? A cautionary tale. British Journal of Obstetrics and Gynaecology 99, 707710.CrossRefGoogle ScholarPubMed
Harding, R., Snigger, J. N., Poore, E. R. & Johnson, P. (1984). Ingestion in fetal sheep and its relation to sleep states and breathing movements. Quarterly Journal of Experimental Physiology 69, 477486.CrossRefGoogle ScholarPubMed
Hardy, K. (1993). Development of human blastocysts. In Preimplantation Embryo Development, pp. 184199 [Bavister, B. D., editor]. New York: Springer-Verlag.CrossRefGoogle Scholar
Harned, H. S. & Ferreiro, J. (1973). Initiation of breathing by cold stimulation. Effects of change in ambient temperature on respiratory activity of the full-term lamb. Pediatrics 83, 663669.Google ScholarPubMed
Hay, W. W. Jr, Molina, R. A., DiGiacomo, J. E. & Meschia, G. (1990). Model of placental glucose consumption and glucose transfer. American Journal of Physiology 258, R569R577.Google ScholarPubMed
Hay, W. W. Jr, Sparks, J. W., Wilkening, R. B., Battaglia, F. C. & Meschia, G. (1984). Fetal glucose uptake and utilization as functions of maternal glucose concentration. American Journal of Physiology 246, E237E242.Google ScholarPubMed
Hellerstrom, C. & Swenne, I. (1991). Functional maturation and proliferation of fetal pancreatic β-cells. Diabetes 40, Suppl. 2, 8993.CrossRefGoogle ScholarPubMed
Imakawa, K., Helmer, S. D., Nephew, K. P., Meka, C. S. R. & Christenson, R. K. (1993). A novel role for GM-CSF: Enhancement of pregnancy specific interferon production, ovine trophoblast protein-1. Endocrinology 132, 18691871.CrossRefGoogle ScholarPubMed
Irestedt, L., Lagercrantz, H., Hjemdahl, P. & Belfrage, P. (1982). Fetal and maternal plasma catecholamine levels at elective caesarean section under general or epidural anaesthesia versus vaginal delivery. American Journal of Obstetrics and Gynecology 142, 10041010.CrossRefGoogle ScholarPubMed
Lassarre, C., Hardouin, S., Daffox, F., Forestier, F., Frankienne, F. & Binoux, M. (1991). Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatric Research 29, 219225.CrossRefGoogle ScholarPubMed
Leese, H. J. (1991). Metabolism of the preimplantation mammalian embryo. In Oxford Reviews of Reproductive Biology, pp. 3572 [Milligan, S. R., editor]. Oxford: Oxford University Press.Google Scholar
Lemons, J. A. & Schreiner, R. L. (1983). Amino acid metabolism in the ovine fetus. American Journal of Physiology 244, E459E466.Google ScholarPubMed
Leury, B. J., Bird, A. R., Chandler, K. D. & Bell, A. W. (1990). Glucose partitioning in the pregnant ewe: effects of undernutrition and exercise. British Journal of Nutrition 64, 449462.CrossRefGoogle ScholarPubMed
Liechty, E. A. & Lemons, J. A. (1984). Changes in ovine fetal hindlimb amino acid metabolism during maternal fasting. American Journal of Physiology 246, E430E435.Google ScholarPubMed
McCrabb, G. J., Egan, A. R. & Hosking, B. J. (1991). Maternal undernutrition during mid pregnancy in sheep. Placental size and its relationship to calcium transfer during late pregnancy. British Journal of Nutrition 65, 157168.CrossRefGoogle ScholarPubMed
MacMahon, R. A., Frampton, R. J. & Yardley, R. W. (1990). Effect on the fetus of infusing a commercial amino acid preparation into a pregnant sheep. Biology of the Neonate 57, 231237.CrossRefGoogle ScholarPubMed
Maltin, C. A., Delday, M. I. & Hay, S. M. (1990). The effect of clenbuterol administration in utero and throughout lactation on pre- and post-natal muscle development in the rat. Growth, Development and Aging 54, 143150.Google ScholarPubMed
Mellor, D. J. (1983). Nutritional and placental determinants of fetal growth rate in sheep and consequences for the newborn lamb. British Veterinary Journal 139, 307324.CrossRefGoogle ScholarPubMed
Mellor, D. J. & Cockburn, F. (1986). A comparison of energy metabolism in the newborn infant, piglet and lamb. Quarterly Journal of Experimental Physiology 71, 361379.CrossRefGoogle ScholarPubMed
Mellor, D. J. & Matheson, I. C. (1979). Daily changes in the curved crown-rump length of individual fetuses during the last 60 days of pregnancy and effects of different levels of maternal nutrition. Quarterly Journal of Experimental Physiology 64, 119131.CrossRefGoogle ScholarPubMed
Mellor, D. J. & Murray, L. (1981). Effects of placental weight and maternal nutrition on the growth rates of individual fetuses in twin bearing ewes during late pregnancy. Research in Veterinary Science 30, 198204.CrossRefGoogle ScholarPubMed
Mercer, J. B., Andrews, D. C. & Szekely, M. (1979). Thermoregulatory responses in newborn lambs during the first thirty-six hours of life. Journal of Thermal Biology 4, 239245.CrossRefGoogle Scholar
Milley, J. R. (1986). The effect of chronic hyperinsulinemia on ovine fetal growth. Growth 50, 390401.Google ScholarPubMed
Milley, J. R. (1993). Ovine fetal protein metabolism during decreased glucose delivery. American Journal of Physiology 265, E525E531.Google ScholarPubMed
Miodovnik, M., Skillman, C. A., Hertzberg, V., Harrington, D. J. & Clark, K. E. (1986). Effect of maternal hyperketonemia in hyperglycemic pregnant ewes and their fetuses. American Journal of Obstetrics and Gynecology 154, 394401.CrossRefGoogle ScholarPubMed
Moessinger, A. C., Harding, R., Adamson, T. M., Singh, M. & Kin, G. T. (1990). Role of lung liquid volume in growth and maturation of the fetal sheep lung. Journal of Clinical Investigation 86, 12701277.CrossRefGoogle Scholar
Nedergaard, J., Connolly, E. & Cannon, B. (1986). Brown adipose tissue in the mammalian neonate. In Brown Adipose Tissue, pp. 152213 [Trayhurn, P., editor]. London: Edward Arnold.Google Scholar
Nicolini, V., Hubinont, C., Santolaya, J., Fisk, N. M. & Rodeck, C. H. (1990). Effects of intravenous glucose challenge in normal and growth retarded fetuses. Hormone and Metabolic Research 22, 426430.CrossRefGoogle ScholarPubMed
Oddy, V. H., Gooden, J. M. & Annison, E. F. (1984). Partitioning of nutrients in Merino ewes. 1. Contribution of skeletal muscle, the pregnant uterus and the lactating mammary gland to total energy expenditure. Australian Journal of Biological Sciences 37, 375388.CrossRefGoogle ScholarPubMed
Owens, J. A. (1991). Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors. Reproduction, Fertility and Development 3, 501517.CrossRefGoogle ScholarPubMed
Owens, J. A., Kind, L., Robinson, J. & Owens, P. C. (1994). Circulating insulin-like growth factors-I and -II and substrates in fetal sheep following restriction of placental growth. Journal of Endocrinology 140, 513.CrossRefGoogle ScholarPubMed
Paulick, R. P., Meyers, R.J. & Rudolph, A. M. (1992). Effect of maternal oxygen administration on fetal oxygenation during graded reduction of umbilical or uterine blood flow in fetal sheep. American Journal of Obstetrics and Gynecology 167, 233239.CrossRefGoogle ScholarPubMed
Phillips, A. F., Porte, P. J., Stabinsky, S., Rosenkrantz, T. S. & Raye, J. R. (1984). Effects of chronic fetal hyperglycemia upon oxygen consumption in the ovine fetus and conceptus. Journal of Clinical Investigation 74, 279286.CrossRefGoogle Scholar
Phillips, A. F., Rosenkrantz, T. S., Lemons, J. A., Knox, I., Porte, P. J. & Raye, J. R. (1990). Insulin-induced alterations in amino acid metabolism in the fetal lamb. Journal of Developmental Physiology 13, 251259.Google Scholar
Prentice, A. M. & Whitehead, R. G. (1987). The energetics of human reproduction. In Reproductive Energetics in Mammals, Zoological Society of London Symposia 57, pp. 275304 [Loudon, A. S. I. and Racey, P. A., editors]. Oxford: Clarendon Press.Google Scholar
Rahn, H. (1982). Comparison of embryonic development in birds and mammals: birth weight, time and cost. In A Companion to Animal Physiology, pp. 124137 [Taylor, C. R., Johansen, K. and Bolis, L., editors]. Cambridge: Cambridge University Press.Google Scholar
Rhind, S. M., Robinson, J. J. & McDonald, I. (1980). Relationships among uterine and placental factors in prolific ewes and their relevance to variations in foetal weight. Animal Production 30, 115124.Google Scholar
Rieger, D. (1992). Relationships between energy metabolism and development of early mammalian embryos. Theriogenology 37, 7593.CrossRefGoogle Scholar
Robinson, J. J. (1986). Changes in body composition during pregnancy and lactation. Proceedings of the Nutrition Society 45, 7180.CrossRefGoogle ScholarPubMed
Robinson, J. J., McDonald, I., Brown, D. S. & Fraser, C. (1985). Studies on reproduction in prolific ewes. 8. The concentrations and rates of accretion of amino acids in the foetuses. Journal of Agricultural Science, Cambridge 105, 2126.CrossRefGoogle Scholar
Robinson, J. J., McDonald, I., Fraser, C. & Crofts, R. M. J. (1977). Studies on reproduction in prolific ewes. 1. Growth of the products of conception. Journal of Agricultural Science, Cambridge 88, 539552.CrossRefGoogle Scholar
Robinson, J. J., McDonald, I., Fraser, C. & Gordon, J. G. (1980). Studies on reproduction in prolific ewes. 6. The efficiency of energy utilization for conceptus growth. Journal of Agricultural Science, Cambridge 94, 331338.CrossRefGoogle Scholar
Robinson, J. J., McDonald, I., McHattie, I. & Pennie, K. (1978). Studies on reproduction in prolific ewes. 4. Sequential changes in the maternal body during pregnancy. Journal of Agricultural Science, Cambridge 91, 291304.CrossRefGoogle Scholar
Robinson, J. S., Owens, J. A., DeBarro, T., Lok, F. & Chidzanja, S. (1994). Maternal nutrition and fetal growth. In Early Fetal Growth and Development, pp. 317329 [Ward, R. H. T., Smith, S. K. and Donnai, D., editors]. London: RCOG Press.Google Scholar
Sacher, G. A. & Staffeldt, E. F. (1974). Relation of gestation time to brain weight for placental mammals: Implications for the theory of vertebrate growth. American Naturalist 108, 593615.CrossRefGoogle Scholar
Simmen, R. C. M., Ko, Y. & Simmen, F. A. (1993). Insulin-like growth factors and blastocyst development. Theriogenology 39, 163175.CrossRefGoogle Scholar
Simmons, M. A., Battaglia, F. C. & Meschia, G. (1979). Placental transfer of glucose. Journal of Developmental Physiology 1, 227243.Google ScholarPubMed
Soothill, P. W., Nicolaides, K. H. & Campbell, S. (1987). Prenatal asphyxia, hyperlacticaemia, hypoglycaemia and erythroblastosis in growth retarded fetuses. British Medical Journal 294, 10511053.CrossRefGoogle ScholarPubMed
Spencer, G. S. G. & Robinson, G. M. (1993). Stimulation of placental, fetal and neonatal growth by thyroxine administration to pregnant rats. Journal of Endocrinology 139, 275279.CrossRefGoogle ScholarPubMed
Susa, J. B., Neave, C., Sehgal, P., Singer, D. B., Zeller, P. & Schwartz, R. (1984). Chronic hyperinsulinemia in the fetal rhesus monkey. Diabetes 33, 656660.CrossRefGoogle ScholarPubMed
Symonds, M. E. (1995). Metabolism and growth during neonatal and postnatal development. In The Fetus and Neonate, vol. 3 Growth [Hanson, M. A., Spencer, J. A. D. and Rodeck, C. H., editors]. Cambridge: Cambridge University Press (In the Press).Google Scholar
Symonds, M. E., Bird, J. A., Clarke, L., Darby, C. J., Gate, J. J. & Lomax, M. A. (1994 a). Manipulation of brown adipose tissue development in neonatal and postnatal lambs. In Temperature Regulation, pp. 309314 [Milton, A. S., editor]. Switzerland: Birkhauser.CrossRefGoogle Scholar
Symonds, M. E., Bird, J. A., Clarke, L., Gate, J. J. & Lomax, M. A. (1994 b). Nutrition, temperature and homeostasis during perinatal development. Journal of Developmental Physiology (In the Press).Google Scholar
Symonds, M. E., Bryant, M. J., Clarke, L., Darby, C. J. & Lomax, M. A. (1992). Effect of maternal cold exposure on brown adipose tissue and thermogenesis in the neonatal lamb. Journal of Physiology 455, 487502.CrossRefGoogle ScholarPubMed
Symonds, M. E., Clarke, L. & Lomax, M. A. (1994 c). The regulation of neonatal metabolism and growth. In Early Fetal Growth and Development, pp. 407419 [Ward, R. H. T., Smith, S. K. and Donnai, D., editors]. London: RCOG Press.Google Scholar
Szeto, H. H., Cheng, P. Y., Decena, J. A., Wu, D. L., Cheng, Y. & Dwyer, G. (1992). Developmental changes in continuity and stability of breathing in the fetal lamb. American Journal of Physiology 262, R452R458.Google ScholarPubMed
Thompson, J. G., Gardiner, D. K., Pugh, P. A., McMillan, W. H. & Tervit, H. R. (1994). Lamb birthweight following transfer is affected by the culture system used for pre-elongation development of embryos. Journal of Reproduction and Fertility, Abstract Series no. 13, Abstr. 69.Google Scholar
Vatnick, I. & Bell, A. W. (1992). Ontogeny of fetal hepatic and placental growth and metabolism in sheep. American Journal of Physiology 263, R619R623.Google ScholarPubMed
Wales, R. G. & Cuneo, C. L. (1989). Morphology and chemical analysis of the sheep conceptus from the 13th to the 19th day of pregnancy. Reproduction, Fertility and Development 1, 3139.CrossRefGoogle Scholar
Wales, R. G. & Du, Z. F. (1993). Contribution of the pentose phosphate pathway to glucose utilization by preimplantation sheep embryos. Reproduction, Fertility and Development 5, 329340.CrossRefGoogle ScholarPubMed
Wales, R. G. & Waugh, E. E. (1993 a). Catabolic utilization of glucose by the sheep conceptus between days 13 and 19 of pregnancy. Reproduction, Fertility and Development 5, 111122.CrossRefGoogle Scholar
Wales, R. G. & Waugh, E. E. (1993 b). Oxidation of [U-14C]acetate by the sheep conceptus between days 13 and 19 of pregnancy. Reproduction, Fertility and Development 5, 201208.CrossRefGoogle Scholar
Walker, A. M., Cannata, J., Dowling, M. H., Ritchie, B. & Maloney, J. E. (1987). Sympathetic and parasympathetic control of heart rate in unanaesthetized fetal and newborn lambs. Biology of the Neonate 33, 135143.CrossRefGoogle Scholar
Walker, S. K., Heard, T. M. & Seamark, R. F. (1992). In vitro culture of sheep embryos without co-culture: successes and perspectives. Theriogenology 37, 111126.CrossRefGoogle Scholar
Warburton, D., Parton, L., Buckley, D., Cosico, L. & Saluna, T. (1987). Effects of glucose infusion on surfactant and glycogen regulation in fetal lamb lung. Journal of Applied Physiology 63, 17501756.CrossRefGoogle ScholarPubMed
Waugh, E. E. & Wales, R. G. (1993). Incorporation of substrate carbon from [U-14C]acetate by the sheep conceptus recovered from the uterus on days 13 to 19 of pregnancy. Reproduction, Fertility and Development 5, 209217.CrossRefGoogle Scholar
Wilkening, R. B., Boyle, D. W., Teng, C., Meschia, G. & Battaglia, F. C. (1994). Amino acid uptake by the ovine hindlimb under normal and euglycemic hyperinsulinemic states. American Journal of Physiology 266, E72E78.Google ScholarPubMed
Zhou, J. & Bondy, C. A. (1993). Placental glucose transporter gene expression and metabolism in the rat. Journal of Clinical Investigation 91, 845852.CrossRefGoogle ScholarPubMed