Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T12:57:40.017Z Has data issue: false hasContentIssue false

Metabolic implications of ammonia production in the ruminant

Published online by Cambridge University Press:  28 February 2007

D. S. Parker
Affiliation:
Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
M. A. Lomax
Affiliation:
School of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 2AJ
C. J. Seal
Affiliation:
Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
J. C. Wilton
Affiliation:
School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nitrogen transactions in the gut’
Copyright
Copyright © The Nutrition Society 1995

References

Agricultural and Food Research Council (1993). Energy and Protein Requirements pf Ruminants. Wallingford: CAB International.Google Scholar
Agricultural Research Council (1980). The Nutrient Requirements of Farm Livestock no. 2. Ruminants. Farnham Common: Commonwealth Agricultural Bureaux.Google Scholar
Agricultural Research Council (1984). Report of the Protein Group of the Agricultural Research Council Working Party on the Nutrient Requirements of Ruminants – Supplementary Report to Chapter 4 (ARC, 1980). Farnham Common: Commonwealth Agricultural Bureaux.Google Scholar
Aiello, R. J. & Armentano, L. E. (1987). Gluconeogenesis in goat hepatocytes is affected by calcium, ammonia and other key metabolites but not primarily through redox state. Comparative Biochemistry and Physiology 88, 193201.Google Scholar
Bergmeyer, H. U. & Beutler, H. O. (1985). Ammonia. In Methods of Enzymatic Analysis, vol. 8, pp. 454461. [Bergmeyer, H. U., editor-in-chief]. Basel: Weinheim.Google Scholar
Bödeker, D., Oppelland, G. & Höller, H. (1992 a). Involvement of carbonic anhydrase in ammonia flux across rumen mucosa in vitro. Experimental Physiology 77, 517519.CrossRefGoogle ScholarPubMed
Bödeker, D., Shen, Y., Kemkowski, J. & Höller, H. (1992 b). Influence of short-chain fatty acids on ammonia absorption across the rumen wall in sheep. Experimental Physiology 77, 369376.CrossRefGoogle ScholarPubMed
Bödeker, D., Winkler, A. & Höller, H. (1990). Ammonia absorption from the isolated reticulo-rumen in sheep. Experimental Physiology 75, 587595.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1962). Some nutritional characteristics of predominant culturable ruminal bacteria. Journal of Bacteriology 84, 605614.CrossRefGoogle ScholarPubMed
Chalupa, W. (1984). Discussion on protein symposium. Journal of Dairy Science 67, 11341146.CrossRefGoogle Scholar
Cooper, A. J. L., Nieves, E., Coleman, A. E., Filc-DeRicco, S. & Gelbard, A. S. (1987). Short-term metabolic fate of [13N]ammonia in rat liver in vivo. Journal of Biological Chemistry 262, 10731080.CrossRefGoogle ScholarPubMed
Cotta, M. A. & Hespell, R. B. (1986). Protein and amino acid metabolism of rumen bacteria. In Control of Digestion and Metabolism in Ruminants, pp. 122136 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Washington, DC: Butterworths.Google Scholar
Demigné, C., Yacoub, C., Morand, C. & Rémésy, C. (1991). Interactions between propionate and amino acid metabolism in isolated sheep hepatocytes. British Journal of Nutrition 65, 301317.CrossRefGoogle ScholarPubMed
Egan, A. R., Boda, K. & Vardy, J. (1986). Regulation of nitrogen metabolism and recycling. In Control of Digestion and Metabolism in Ruminants, pp. 386402 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Washington, DC: Butterworths.Google Scholar
Fernandez, J. M., Croon, W. J., Tate, L. P. & Johnson, A. D. (1990). Subclinical ammonia toxicity in steers: Effects on hepatic and portal-drained visceral flux of metabolites and regulatory hormones. Journal of Animal Science 68, 17261742.CrossRefGoogle ScholarPubMed
Firkins, J. L., Lewis, S. M., Montgomery, L., Berger, L. L., Merchen, N. R. & Fahey, G. C. (1987). Effects of feed intake and dietary urea concentration on ruminal dilution rate and efficiency of bacterial growth in steers. Journal of Dairy Science 70, 23122321.CrossRefGoogle ScholarPubMed
Fitch, N. A., Gill, M., Lomax, M. A. & Beever, D. E. (1989). Nitrogen and glucose metabolism by the liver of forage- and forage-concentrate fed cattle. Proceedings of the Nutrition Society 48, 76A.Google Scholar
Gross, K. L., Harmon, D. L. & Avery, T. B. (1990). Portal-drained visceral flux of nutrients in lambs fed Alfalfa or maintained by total intragastric infusion. Journal of Animal Science 68, 214221.CrossRefGoogle ScholarPubMed
Harmon, D. L., Avery, T. B., Huntington, G. B. & Reynolds, P. J. (1988). Influence of ionophore addition to roughage and high-concentrate diets on portal blood flow and net nutrient flux in cattle. Canadian Journal of Animal Science 68, 419429.CrossRefGoogle Scholar
Hartman, W. J. & Prior, R. L. (1992). Dietary arginine deficiency alters flux of glutamine and urea cycle intermediates across the portal-drained viscera and liver of rats. Journal of Nutrition 122, 14721482.CrossRefGoogle ScholarPubMed
Haussinger, D., Lamers, W. H. & Moorman, A. F. M. (1992). Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46, 7293.CrossRefGoogle Scholar
Henning, P. H., Steyn, D. G. & Meissner, H. H. (1993). Effect of synchronization of energy and nitrogen supply on ruminal characteristics and microbial growth. Journal of Animal Science 71, 25162528.CrossRefGoogle ScholarPubMed
Hogan, J. P. (1961). The absorption of ammonia through the rumen of the sheep. Australian Journal of Biological Science 14, 448460.CrossRefGoogle Scholar
Hristov, M. & Broderick, G. A. (1994). In vitro determinations of rumination protein degradability using [15N]ammonia to correct for microbial nitrogen uptake. Journal of Animal Science 72, 13441354.CrossRefGoogle Scholar
Huntington, G. B. (1984). Net absorption of glucose and nitrogenous compounds in lactating Holstein cows. Journal of Dairy Science 67, 19191927.CrossRefGoogle ScholarPubMed
Huntington, G. B. (1989). Hepatic urea synthesis and site and rate of urea removal from blood of beef steers fed alfalfa hay or a high concentrate diet. Canadian Journal of Animal Science 69, 215223.CrossRefGoogle Scholar
Jungemann, K. (1986). Functional heterogeneity of periportal and perivenous hepatocytes. Enzyme 35, 161180.CrossRefGoogle Scholar
Kang-Meznarich, J. H. & Broderick, G. A. (1981). Effects of incremental urea supplementation on ruminal ammonia concentration and bacterial protein formation. Journal of Animal Science 51, 422431.CrossRefGoogle Scholar
Katunuma, N., Okada, M. & Nishi, Y. (1966). Regulation of the urea cycle and TCA cycle by ammonia. Advances in Enzyme Regulation 4, 317336.CrossRefGoogle ScholarPubMed
Kennedy, P. M., Early, R. J., Chrispherson, R. J. & Milligan, L. P. (1986). Nitrogen transformations and duodenal amino acid content in sheep given four forage diets and exposed to warm and cold ambient temperatures. Canadian Journal of Animal Science 66, 951957.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep. British Journal of Nutrition 39, 105117.CrossRefGoogle ScholarPubMed
Krebs, H. A., Lund, P. & Stubbs, M. (1979). Interrelations between gluconeogenesis and urea synthesis. In Gluconeogenesis: Its Regulation in Mammalian Species, pp. 269291 [Hanson, W. and Melhan, M. A., editors]. New York: Wiley.Google Scholar
Linzell, J. L., Setchell, B. P. & Lindsay, D. B. (1971). The isolated perfused liver of sheep: assessment of its metabolic, synthetic and secretory functions. Quarterly Journal of Experimental Physiology 56, 5371.CrossRefGoogle Scholar
Lobley, G. E. (1991). Some interactions between protein and energy in ruminant metabolism. In Proceedings of the 6th International Symposium on Protein Metabolism and Nutrition, Herning, Denmark, pp. 6679 [Eggum, B. O., Boisen, S., Børsting, C., Danfsær, A. and Hvelplund, T., editors]. Foulum: National Institute of Animal Science.Google Scholar
Lobley, G. E., Connell, A., Lomax, M. A., Brown, D. S., Milne, E., Calder, A. G. & Farningham, D. A. H. (1995). Hepatic detoxification of ammonia in the ovine liver: possible consequences for amino acid catabolism. British Journal of Nutrition 73, 667685.CrossRefGoogle ScholarPubMed
Luo, Q. J., Maltby, S. A., Lobley, G. E., Calder, A. G. & Lomax, M. A. (1995). The effect of amino acids on the metabolic fate of 15NH4Cl in isolated sheep hepatocytes. European Journal of Biochemistry 228, 912917.CrossRefGoogle ScholarPubMed
McCullough, I. (1967). The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta 17, 297.CrossRefGoogle ScholarPubMed
MacKie, R. I. & White, B. A. (1990). Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient impact. Journal of Dairy Science 73, 29712995.CrossRefGoogle Scholar
MacRae, J. C. & Reeds, P. J. (1980). Prediction of protein deposition in ruminants. In Protein Deposition in Animals, pp. 225249 [Buttery, P. J. and Lindsay, , editors]. London: Butterworths.CrossRefGoogle Scholar
MacRae, J. C. & Ulyatt, M. J. (1974). Quantitative digestion of fresh herbage in sheep. II. The sites of digestion of some nitrogenous constituents. Journal of Agricultural Science, Cambridge 82, 309319.CrossRefGoogle Scholar
MacRae, J. C., Ulyatt, M. J., Pearce, P. D. & Hendtlass, J. (1972). Quantitative intestinal digestion of nitrogen in sheep given formaldehyde-treated and untreated casein supplements. British Journal of Nutrition 27, 3950.CrossRefGoogle ScholarPubMed
Malmlöf, K. (1987). Porto-arterial plasma differences of urea and ammonia-nitrogen in growing pigs given high- and low-fibre diets. British Journal of Nutrition 57, 439446.CrossRefGoogle ScholarPubMed
Maltby, S. A., Beever, D. E., Lomax, M. A., Crompton, L. A. & Pippard, C. J. (1993 a). The influence of diet and increased ammonia supply on energy and nitrogen metabolism across splanchnic tissues in growing cattle. Animal Production 56, 431.Google Scholar
Maltby, S. A., Crompton, L. A., Lomax, M. A., Beever, D. E. & Pippard, C. J. (1993 b). The effect of increased ammonia supply on post-prandial hepatic metabolism in growing steers fed either forage or cereal-based diets. Proceedings of the Nutrition Society 52, 295A.Google Scholar
Maltby, S. A., Lomax, M. A., Beever, D. E. & Pippard, C. J. (1991). The effect of increased ammonia supply on post-prandial portal-drained viscera and hepatic metabolism in growing steers fed maize silage. In Energy Metabolism of Farm Animals. European Association of Animal Production Publication no. 58, pp. 2023 [Wenk, C. and Boessinger, M., editors]. Zurich: ETH.Google Scholar
Maltby, S. A., Reynolds, C. K., Lomax, M. A. & Beever, D. E. (1993 c). The effect of increased absorption of ammonia and arginine on splanchnic metabolism of beef steers. Animal Production 56, 462463.Google Scholar
Mathison, G. W. & Milligan, L. P. (1971). Nitrogen metabolism in sheep. British Journal of Nutrition 25, 351366.CrossRefGoogle ScholarPubMed
Meijer, A. J., Lamers, W. H. & Chamuleau, R. A. F. M. (1990). Nitrogen metabolism and ornithine cycle function. Physiological Reviews 70, 701748.CrossRefGoogle ScholarPubMed
Mooney, P. & O'Donovan, D. J. (1970). The permeability of the rumen to simple nitrogenous compounds. Biochemical Journal 119, 18P19P.CrossRefGoogle ScholarPubMed
Nissim, I., Cattano, C., Nissim, I. & Yudkoff, M. (1992). Relative role of the glutaminase, glutamate dehydrogenase and AMP-deaminase pathways in hepatic ureagenesis: studies with 15N. Archives of Biochemistry and Biophysics 292, 393401.CrossRefGoogle ScholarPubMed
Nolan, J. V. (1975). Quantitative models of nitrogen metabolism in sheep. In Digestion and Metabolism in the Ruminant, pp. 416431 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England.Google Scholar
Nolan, J. V. & MacRae, J. C. (1976). Absorption and recycling of nitrogenous compounds in the digestive tract of sheep. Proceedings of the Nutrition Society 35, 110A.Google ScholarPubMed
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). Further studies on the dynamics of nitrogen metabolism in sheep. British Journal of Nutrition 35, 127147.CrossRefGoogle ScholarPubMed
Nolan, J. V. & Strachin, S. (1979). Fermentation and nitrogen dynamics in Merino sheep given a low-quality-roughage diet. British Journal of Nutrition 42, 6380.CrossRefGoogle Scholar
Orzechowski, A., Motyl, T., Pierzynowski, G. & Barej, W. (1987). Hepatic capacity for ammonia removal in sheep. Journal of Veterinary Medicine 34, 108112.CrossRefGoogle ScholarPubMed
Pilgrim, A. F., Gray, F. V., Weller, R. A. & Belling, C. B. (1970). Synthesis of microbial protein from ammonia in the sheep's rumen and the proportions of dietary nitrogen converted to microbial nitrogen. British Journal of Nutrition 24, 589598.CrossRefGoogle ScholarPubMed
Prior, R. L., Clifford, A. J., Hogue, D. E. & Visek, W. J. (1970). Enzymes and metabolites of intermediary metabolism in urea-fed sheep. Journal of Nutrition 100, 438444.CrossRefGoogle ScholarPubMed
Rémésy, C. & Demigné, C. (1989). Specific effects of fermentable carbohydrates on blood urea flux and ammonia absorption in the rat cecum. Journal of Nutrition 119, 560565.CrossRefGoogle ScholarPubMed
Rémond, D., Chaise, J. P., Delval, E. & Poncet, C. (1993 a). Net flux of metabolites across the ruminal wall of sheep fed twice a day with Orchardgrass hay. Journal of Animal Science 71, 25292538.CrossRefGoogle Scholar
Rémond, D., Chaise, J. P., Delval, E. & Poncet, C. (1993 b). Net transfer of urea and ammonia across the ruminal wall of sheep. Journal of Animal Science 71, 27852792.CrossRefGoogle ScholarPubMed
Reynolds, C. K. (1992). Metabolism of nitrogenous compounds by ruminant liver. Journal of Nutrition 122, 850854.CrossRefGoogle ScholarPubMed
Reynolds, C. K. & Huntington, G. B. (1988). Partition of portal-drained visceral net flux in beef steers. 1. Blood flow and net flux of oxygen, glucose and nitrogenous compounds across stomach and post-stomach tissues. British Journal of Nutrition 60, 539551.CrossRefGoogle ScholarPubMed
Reynolds, C. K., Tyrell, H. F. & Reynolds, P. J. (1991). Effect of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: net nutrient metabolism by visceral tissues. Journal of Nutrition 121, 10041015.CrossRefGoogle ScholarPubMed
Rooke, J. A., Lee, N. H. & Armstrong, D. G. (1987). The effects of intraruminal infusions of urea, casein, glucose syrup and a mixture of casein and glucose syrup on nitrogen digestion in the rumen of cattle receiving grass-silage diets. British Journal of Nutrition 57, 8998.CrossRefGoogle Scholar
Satter, L. D. & Slyter, L. L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition 32, 199208.CrossRefGoogle ScholarPubMed
Seal, C. J., Parker, D. S. & Avery, P. J. (1992). The effect of forage and forage-concentrate diets on rumen fermentation and metabolism of nutrients by the mesenteric- and portal-drained viscera in growing steers. British Journal of Nutrition 67, 355370.CrossRefGoogle ScholarPubMed
Seal, C. J. & Reynolds, C. K. (1993). Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutrition Research Reviews 6, 185208.CrossRefGoogle ScholarPubMed
Siddons, R. C., Nolan, J. V., Beever, D. E. & MacRae, J. C. (1985 a). Nitrogen digestion and metabolism in sheep consuming diets containing contrasting forms and levels of N. British Journal of Nutrition 54, 175187.CrossRefGoogle ScholarPubMed
Siddons, R. C., Paradine, J., Gale, D. L. & Evans, R. T. (1985 b). Estimation of the degradability of dietary protein in the sheep rumen by in vivo and in vitro procedures. British Journal of Nutrition 54, 545561.CrossRefGoogle ScholarPubMed
Sinclair, L. A., Garnsworthy, P. C., Newbold, J. R. & Buttery, P. J. (1993). Effect of synchronising the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. Journal of Agricultural Science, Cambridge 120, 251263.CrossRefGoogle Scholar
Song, M. K. & Kennelly, J. J. (1989). Effects of ammoniated barley silage on ruminal fermentation, nitrogen supply to the small intestine, ruminal and whole tract digestion, and milk production of Holstein cows. Journal of Dairy Science 72, 29812990.CrossRefGoogle Scholar
Spires, H. R. & Clark, J. H. (1979). Effect of intra-ruminal urea administration on glucose metabolism in dairy steers. Journal of Nutrition 109, 14381447.CrossRefGoogle Scholar
Symonds, H. W., Mather, D. L. & Collis, K. A. (1981). The maximum capacity of the liver of the adult dairy cow to metabolize ammonia. British Journal of Nutrition 46, 481486.CrossRefGoogle ScholarPubMed
Taminga, S. (1983). Recent advances in our knowledge on protein digestion and absorption in ruminants. In Protein Metabolism and Nutrition, Proceedings of the 4th EAAP International Symposium, pp. 263287 [Arnal, M., Pion, R. and Bonin, D., editors]. Paris: INRA.Google Scholar
Thompson, D. J., Beever, D. E., Lonsdale, C. R., Haines, M. J., Cammell, S. B. & Austin, A. R. (1981). The digestion by cattle of grass silage made with formic acid and formic acid-formaldehyde. British Journal of Nutrition 46, 193207.CrossRefGoogle ScholarPubMed
van Berlo, C. L. H., van Leeuwen, P. A. M. & Soeters, P. B. (1988). Porcine intestinal ammonia liberation. Influence of food intake, lactulose and neomycin treatment. Journal of Hepatology 7, 250257.CrossRefGoogle ScholarPubMed
Virtanen, A. I. (1969). On nitrogen metabolism in milking cows. Federation Proceedings 28, 232240.Google ScholarPubMed
Visek, W. J. (1969). Some aspects of ammonia toxicity in animal cells. Journal of Dairy Science 51, 286295.CrossRefGoogle Scholar
Visek, W. J. (1984). Ammonia: Its effects on biological systems, metabolic hormones and reproduction. Journal of Dairy Science 67, 481498.CrossRefGoogle ScholarPubMed
Weekes, T. E. C., Richardson, R. I. & Geddes, N. (1978). The effect of ammonia on gluconeogenesis by isolated sheep liver cells. Proceedings of the Nutrition Society 38, 3A.Google Scholar
Weijs, P. J. M., Calder, A. G. & Lobley, G. E. (1995). Incorporation of [15N]ammonia into urea and amino acids as influenced by fasting and feeding. Proceedings ofthe Nutrition Society 54 (In the Press).Google Scholar
Wernli, C. G. & Wilkins, R. J. (1980). Nutritional studies with sheep fed conserved ryegrass. 1. Silage and dried grass offered ad libitum without supplements. Quarterly Journal of Experimental Physiology 60, 8994.Google Scholar
Wilton, J. C. (1989). The effect of ammonia upon the metabolism of carbohydrates and amino acids in the liver of growing steers fed silage. PhD Thesis, University of Reading.Google Scholar
Wilton, J. C., Gill, M. & Lomax, M. A. (1988). Uptake of ammonia across the liver of forage-fed cattle. Proceedings of the Nutrition Society 47, 153A.Google Scholar
Wolff, J. E., Bergman, E. N. & Williams, H. H. (1972). Net metabolism of plasma amino acids by liver and portal-drained viscera of fed sheep. American Journal of Physiology 223, 438446.CrossRefGoogle ScholarPubMed
Wrong, O. (1978). Nitrogen metabolism in the gut. American Journal of Clinical Nutrition 31, 15871593.CrossRefGoogle ScholarPubMed
Yen, J. T. & Nienaber, J. A. (1993). Effects of high-copper feeding on portal ammonia absorption and on oxygen consumption by portal-drained organs and whole animal in growing pigs. Journal of Animal Science 71, 21572163.CrossRefGoogle Scholar
Yen, J. T. & Pond, W. G. (1990). Effect of Carbadox on net absorption of ammonia and glucose into hepatic portal vein of growing pigs. Journal of Animal Science 68, 42364242.CrossRefGoogle ScholarPubMed