Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:37:07.781Z Has data issue: false hasContentIssue false

Quantitative Characterisation for Non-Driving-Related Activities in Automated Vehicles

Part of: Mobility

Published online by Cambridge University Press:  26 July 2019

Florian Fitzen*
Affiliation:
BMW AG;
Jan Reimann
Affiliation:
BMW AG;
Maximilian Amereller
Affiliation:
BMW AG;
Kristin Paetzold
Affiliation:
Bundeswehr University Munich
*
Contact: Fitzen, Florian, BMW AG, Interior, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The technological progress to automated driving not only influences the motion of the vehicle itself but also enables passengers to productively shape their driving time in a new way as they are not occupied with driving tasks anymore. Therefore, non-driving-related activities such as sleeping, working on a notebook or watching movies, become relevant user scenarios for functionally designing the automotive interior. For this purpose, a non-driving-related activity can be described by functions, which support the users in performing their intentional tasks, and functions carriers, which fulfil one or several functions. Basing on previous research findings, a quantitative survey is conducted in order to identify relevant and prioritised functions and function carriers. Five non-driving-related activities are taken into account: 'Making a call', 'sleeping', 'watching a movie', 'talking to passengers' and 'working on a notebook'. Results show a significant difference between general relevancy and specific prioritisation of functions and function carriers. In this contribution, the setup of the study is described, the outcome exemplified and further research steps are deduced.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Backhaus, K. (2011), Multivariate Analysemethoden: Eine anwendungsorientierte Einführung, Springer-Lehrbuch, 13th rev. ed., Springer, Berlin. http://doi.org/10.1007/978-3-642-16491-0Google Scholar
Berman, B. (2016), “With Self-Driving Cars, It's the Interior That Will Matter. Sit back, relax, and enjoy the ride - literally”, available at: http://www.roadandtrack.com/new-cars/future-cars/a30235/with-self-driving-cars-its-the-interior-that-matters/ (accessed 16 January 2017).Google Scholar
Braess, H.-H. and Seiffert, U. (Eds.) (2003), Vieweg Handbuch Kraftfahrzeugtechnik, 3rd ed., Vieweg+Teubner, Wiesbaden. http://doi.org/10.1007/978-3-663-11757-5Google Scholar
Bubb, H. (1995), Ergonomie in Mensch-Maschine-Systemen - Lehrgangsunterlagen “Komfort und Ergonomie im Kraftfahrzeug”, Haus der Technik, Essen.Google Scholar
Döring, N. and Bortz, J. (2016), “Datenerhebung”, in Döring, N. and Bortz, J. (Eds.), Forschungsmethoden und Evaluation, 5th ed., Springer, Berlin Heidelberg, pp. 321578. http://doi.org/10.1007/978-3-642-41089-5Google Scholar
Ehrlenspiel, K. (2009), Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 4. überarb., Hanser, München, Wien. http://doi.org/10.3139/9783446421578Google Scholar
Feldhuetter, A., Hecht, T. and Bengler, K. (2018), Fahrerspezifische Aspekte beim hochautomatisierten Fahren.Google Scholar
Feldhusen, J., Grote, K.-H., Nagarajah, A., Pahl, G., Beitz, W. and Wartzack, S. (2013), “Vorgehen bei einzelnen Schritten des Produktentstehungsprozesses”, in Feldhusen, J. and Grote, K.-H. (Eds.), Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, 8th rev. ed., Springer Vieweg, Berlin Heidelberg, pp. 291410. http://doi.org/10.1007/978-3-642-29569-0_6Google Scholar
Fitzen, F., Seebach, N., Amereller, M. and Paetzold, K. (2018), “Nutzerorientierte Charakterisierung fahrfremder Tätigkeiten in automatisierten Fahrzeugen”, in Krause, D., Paetzold, K. and Wartzack, S. (Eds.), Design for X: Beiträge zum 29. DfX-Symposium, Tutzing, 25.-26.09.2018, TuTech, Hamburg, pp. 263270.Google Scholar
Fraunhofer IAO and Horváth and Partners (2016), The Value of Time: Nutzerbezogene Service-Potenziale durch autonomes Fahren, Stuttgart.Google Scholar
Johanning, V. and Mildner, R. (2015), Car IT kompakt: Das Auto der Zukunft - Vernetzt und autonom fahren, Springer Vieweg, Wiesbaden. http://doi.org/10.1007/978-3-658-09968-8Google Scholar
Petermann-Stock, I., Hackenberg, L., Muhr, T. and Mergl, C. (2013), Wie lange braucht der Fahrer?: Eine Analyse zu Übernahmezeiten aus verschiedenen Nebentätigkeiten während einer hochautomatisierten Staufahrt, München.Google Scholar
Pfleging, B. and Schmidt, A. (Eds.) (2015), “(Non-) Driving-Related Activities in the Car: Defining Driver Activities for Manual and Automated Driving”, Workshop on Experiencing Autonomous Vehicles: Crossing the Boundaries between a Drive and a Ride, Stuttgart.Google Scholar
Tomforde, J. (2007), “Entwicklung und Design von Freizeitmobilen”, in Braess, H.-H. and Seiffert, U. (Eds.), Automobildesign und Technik: Formgebung, Funktionalität, Technik, Friedr. Vieweg and Sohn Verlag, GWV Fachverlage GmbH Wiesbaden, Wiesbaden, pp. 202216. http://doi.org/10.1007/978-3-8348-9411-3_13Google Scholar
Trommer, S., Kolarova, V., Fraedrich, E., Kröger, L., Kickhöfer, B., Kuhnimhof, T., Lenz, B. and Phleps, P. (2016), Autonomous Driving: The Impact of Vehicle Automation on Mobility Behaviour, Berlin.Google Scholar
Vietor, T. and Stechert, C. (2013), “Produktarten zur Rationalisierung des Entwicklungs- und Konstruktionsprozesses”, in Feldhusen, J. and Grote, K.-H. (Eds.), Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, 8th rev. ed., Springer Vieweg, Berlin Heidelberg, pp. 816871. http://doi.org/10.1007/978-3-642-29569-0_17Google Scholar
Wirtschaftswoche (2013), “2035 werden 100 Millionen selbstfahrende Autos verkauft”, available at: https://www.wiwo.de/technologie/green/studie-2035-werden-100-millionen-selbstfahrende-autos-verkauft/13546972.html (accessed 18 October 2018).Google Scholar