Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T21:32:24.084Z Has data issue: false hasContentIssue false

A Matrix-Based Approach to Investigate the Geometrical Dependencies between Non-Driving-Related Tasks and Future Vehicle Concepts

Part of: Mobility

Published online by Cambridge University Press:  26 July 2019

Niko Seebach*
Affiliation:
BMW AG; Ruhr-University Bochum
Marcel Rück
Affiliation:
BMW AG;
Frank Arlt
Affiliation:
BMW AG;
Beate Bender
Affiliation:
Ruhr-University Bochum
*
Contact: Seebach, Niko, BMW AG, Total Vehicle – Geometrical Concept Design, Integration, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Caused by the technology of automated driving the user is temporarily released from driving and can perform non-driving-related tasks (NDRTs), such as sleeping or working. The aim of this paper is to describe the geometrical interdependencies between NDRTs and different vehicle types, to be able to integrate them in the geometric package of the early phase of the vehicle conception. To address the objective a literature based study of existing approaches for vehicle conception and NDRT-studies was carried out. Additionally interviews with n=15 experts from the automotive conception department and a databased analysis of n=259 vehicles was conducted. Based on these investigations 91 geometrical characteristics for NDRTs and vehicle types werde determined and combined through a matrix-based approach. By analysing the approach highly connected characteristics such as the torso angle were identified and equations were set up to describe the relations. The approach can be used for different NDRTs such as relaxing and working and different vehicle types such as sporty cars or SUVs in order to integrate them into the package.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Bubb, H., Bengler, K., Grünen, R.E. and Vollrath, M. (2015), “Automobilergonomie, ATZ / MTZ-Fachbuch, Springer Vieweg”, Wiesbaden. http://doi.org/10.1007/978-3-8348-2297-0.Google Scholar
Ehrlenspiel, K. and Meerkamm, H. (2013), “Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz”, Zusammenarbeit, Vol. 5., überarb. und erweiterte Aufl., Hanser, München, Wien. http://doi.org/10.3139/9783446436275.Google Scholar
Eppinger, S.D. and Browning, T.R. (2012), Design structure matrix methods and applications, Engineering systems, MIT Press, Cambridge Mass. u.a.Google Scholar
Fitzen, F., Seebach, N., Amereller, M. and Paetzold, K. (2018), “Nutzerorientierte Charakterisierung fahrfremder Tätigkeiten in automatisierten Fahrzeugen”, Krause, D., Paetzold, K., Wartzack, S. (Hg.), DfX-Symposium, TuTech Verlag, Tutzing.Google Scholar
GCIE (2018), “Global Cars Manufacturers Information Exchange Group: GCIE Procedure Part 3. Package Drawing Exchanges. Model Year 2018”.Google Scholar
Hahn, J. (2017), “Eigenschaftsbasierte Fahrzeugkonzeption: Eine Methodik in der frühen Konzeptphase”, AutoUni - Schriftenreihe, Vol. 108, Springer, Wiesbaden, Germany. http://doi.org/10.1007/978-3-658-20101-2.Google Scholar
Hirz, M. and Walzel, B. (2018), “Sensor and object recognition technologies for self-driving cars”, Computer-Aided Design and Applications, pp. 18. http://doi.org/10.1080/16864360.2017.1419638.Google Scholar
Krasteva, P., Tzivanopoulos, T., Vietor, T. and Inkermann, D. (2017), “Zielkonfliktidentifikation zwischen Design, Technik und Ergonomie - Ein Beitrag zur Lösungsfindung am Beispiel der PKW-Maßkonzeption”, in Stuttgarter Symposium für Produktentwicklung SSP 2017: Stuttgart, 29. Juni 2017, Wissenschaftliche Konferenz, Universität Stuttgart.Google Scholar
Kuchenbuch, K. (2012), “Methodik zur Identifikation und zum Entwurf packageoptimierter Elektrofahrzeuge, Zugl.: Braunschweig, Techn. Univ.”, Diss., 2012, AutoUni-Schriftenreihe, Vol. 25, Logos-Verl., Berlin.Google Scholar
Lindemann, U. (2009), Methodische Entwicklung technischer Produkte, Springer Berlin Heidelberg, Berlin, Heidelberg. http://doi.org/10.1007/978-3-540-37451-0.Google Scholar
Pahl, G. and Beitz, W. (2013), Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, 8., vollständig überarbeitete Auflage, Springer Vieweg, Berlin, Heidelberg. http://doi.org/10.1007/b137606.Google Scholar
Pfleging, B. (2017), “Automotive user interfaces for the support of non-driving-related activities”, Universität Stuttgart. http://doi.org/10.18419/opus-9090.Google Scholar
Pfleging, B. and Schmidt, A. (2015), “(Non-) Driving-Related Activities in the Car: Defining Driver Activities for Manual and Automated Driving”, Workshop on Experiencing Autonomous Vehicles: Crossing the Boundaries between a Drive and a Ride, No. CHI'15.Google Scholar
Pischinger, S. and Seiffert, U. (Eds.) (2016), Vieweg Handbuch Kraftfahrzeugtechnik, ATZ / MTZ-Fachbuch, 8., aktualisierte und erweiterte Auflage, Springer Vieweg, Wiesbaden. http://doi.org/10.1007/978-3-658-09528-4.Google Scholar
Prinz, A. (2010), “Struktur und Ablaufmodell für das parametrische Entwerfen von Fahrzeugkonzepten”, Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, Berlin, 2010.Google Scholar
Raabe, R. (2013), “Ein rechnergestütztes Werkzeug zur Generierung konsistenter PKW-Maßkonzepte und parametrischer Designvorgaben, Zugl.: Stuttgart, Univ.”, Diss., 2013, Bericht / IKTD, Institut für Konstruktionstechnik und Technisches Design, Universität Stuttgart, Vol. 614, Inst. für Konstruktionstechnik und Techn. Design, Stuttgart.Google Scholar
SAE International J3016 (2016), “Surface Vehicle Recommended Practice. Taxonomy and Definitions for Terms Related to Driving Automation Systems”.Google Scholar
Seebach, N., Fitzen, F., Arlt, F. and Bender, B. (2018), “Geometrische Beschreibung fahrfremder Tätigkeiten”, Krause, D., Paetzold, K., Wartzack, S. (Hg.), DfX-Symposium, TuTech Verlag, Tutzing.Google Scholar
Steward, D.V. (1981), “The design structure system. A method for managing the design of complex systems”, IEEE Transactions on Engineering Management, Vol. EM-28 No. 3, pp. 7174. http://doi.org/10.1109/TEM.1981.6448589.Google Scholar
Tzivanopoulos, T., Watschke, H., Krasteva, P. and Vietor, T. (2015), “Neue Denkansätze in der Fahrzeugkonzeption”, ATZ - Automobiltechnische Zeitschrift, Vol. 117 No. 9, pp. 1621. http://doi.org/10.1007/s35148-015-0101-y.Google Scholar
Warfield, J.N. (1973), “Binary Matrices in System Modeling”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3 No. 5, pp. 441449. http://doi.org/10.1109/TSMC.1973.4309270.Google Scholar