Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T04:14:19.225Z Has data issue: false hasContentIssue false

Wind channeling, magnetospheres, and spindown of magnetic massive stars

Published online by Cambridge University Press:  07 August 2014

S. P. Owocki
Affiliation:
Department of Physics & Astronomy, University of Delaware, Newark, DE 19716USA email: [email protected]
A. ud-Doula
Affiliation:
Penn State Worthington Scranton, Dunmore, PA, USA
R. H. D. Townsend
Affiliation:
Dept. of Astronomy, University of Wisconsin-Madison, Madison, WI, USA
V. Petit
Affiliation:
Department of Physics & Astronomy, University of Delaware, Newark, DE 19716USA email: [email protected]
J. O. Sundqvist
Affiliation:
Universitaetssternwarte Muenchen, Scheinerstr. 1, 81679 Muenchen, Germany
D. H. Cohen
Affiliation:
Dept. of Physics & Astronomy, Swarthmore College, Swarthmore, PA, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A subpopulation (~10%) of hot, luminous, massive stars have been revealed through spectropolarimetry to harbor strong (hundreds to tens of thousand Gauss), steady, large-scale (often significantly dipolar) magnetic fields. This review focuses on the role of such fields in channeling and trapping the radiatively driven wind of massive stars, including both in the strongly perturbed outflow from open field regions, and the wind-fed “magnetospheres” that develop from closed magnetic loops. For B-type stars with weak winds and moderately fast rotation, one finds “centrifugal magnetospheres”, in which rotational support allows magnetically trapped wind to accumulate to a large density, with quite distinctive observational signatures, e.g. in Balmer line emission. In contrast, more luminous O-type stars have generally been spun down by magnetic braking from angular momentum loss in their much stronger winds. The lack of centrifugal support means their closed loops form a “dynamical magnetosphere”, with trapped material falling back to the star on a dynamical timescale; nonetheless, the much stronger wind feeding leads to a circumstellar density that is still high enough to give substantial Balmer emission. Overall, this review describes MHD simulations and semi-analytic dynamical methods for modeling the magnetospheres, the magnetically channeled wind outflows, and the associated spin-down of these magnetic massive stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alecian, E., Wade, G. A., Catala, C., et al. 2013a, MNRAS, 429, 1001Google Scholar
Alecian, E., Wade, G. A., Catala, C., et al. 2013b, MNRAS, 429, 1027CrossRefGoogle Scholar
Babel, J., & Montmerle, T., 1997a, ApJ, 485, L29CrossRefGoogle Scholar
Babel, J. & Montmerle, T., 1997b, A&A, 323, 121Google Scholar
Chlebowski, T., Harnden, F. R. Jr., & Sciortino, S., 1989, ApJ, 341, 427CrossRefGoogle Scholar
Gagné, M., Oksala, M. E., Cohen, D. H., Tonnesen, S. K., ud-Doula, A., Owocki, S. P., Townsend, R. H. D. & MacFarlane, J. J., 2005, ApJ, 628, 986CrossRefGoogle Scholar
Grunhut, J. H., Wade, G. A., Leutenegger, M., et al. 2013, MNRAS, 428, 1686CrossRefGoogle Scholar
Hillenbrand, L. A. 1997, AJ, 113, 1733CrossRefGoogle Scholar
Kivelson, M. G. & Southwood, D. J., 2005, Journal of Geophysical Research (Space Physics), 110, 12209Google Scholar
Kochukhov, O., Lundin, A., Romanyuk, I., & Kudryavtsev, D. 2011, ApJ, 726, 24Google Scholar
Owocki, S. P., Sundqvist, J. O., Cohen, D. H., & Gayley, K. G., 2013, MNRAS, 429, 3379CrossRefGoogle Scholar
Petit, V., Owocki, S. P., Wade, G. A., Cohen, D. H., Sundqvist, J. O., Gagné, M., Maíz Apellániz, J., Oksala, M. E., Bohlender, D. A., Rivinius, T., Henrichs, H. F., Alecian, E., Townsend, R. H. D., ud-Doula, A. & MiMeS Collaboration 2013, MNRAS, 429, 398Google Scholar
Sundqvist, J. O., ud-Doula, A., Owocki, S. P., Townsend, R. H. D., Howarth, I. D., & Wade, G. A., 2012, MNRAS, 423, L21Google Scholar
Townsend, R. H. D., 2008, MNRAS, 389, 559Google Scholar
Townsend, R. H. D., Oksala, M. E., Cohen, D. H., Owocki, S. P. & ud-Doula, A., 2010, ApJ, 714, L318CrossRefGoogle Scholar
Townsend, R. H. D. & Owocki, S. P., 2005, MNRAS, 357, 251Google Scholar
Townsend, R. H. D., Owocki, S. P., & Groote, D., 2005, ApJ, 630, L81Google Scholar
Townsend, R. H. D., Owocki, S. P. & ud-Doula, A., 2007, MNRAS, 382, 139CrossRefGoogle Scholar
ud-Doula, A. & Owocki, S. P., 2002, ApJ, 576, 413CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D., 2008, MNRAS, 385, 97CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D., 2009, MNRAS, 392, 1022CrossRefGoogle Scholar
ud-Doula, A., Sundqvist, J. O., Owocki, S. P., Petit, V., & Townsend, R. H. D., 2013, MNRAS, 428, 2723CrossRefGoogle Scholar