Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T06:44:33.222Z Has data issue: false hasContentIssue false

Understanding galaxy mergers and AGN feedback with UVIT

Published online by Cambridge University Press:  29 January 2021

Khatun Rubinur
Affiliation:
National Centre for Radio Astrophysics - Tata Institute of Fundamental Research, S. P. Pune University Campus, Ganeshkhind, Pune, 411007, India email: [email protected]
Mousumi Das
Affiliation:
Indian Institute of Astrophysics, 2nd Block, Koramangala, Bengaluru, 560034, India
Preeti Kharb
Affiliation:
National Centre for Radio Astrophysics - Tata Institute of Fundamental Research, S. P. Pune University Campus, Ganeshkhind, Pune, 411007, India email: [email protected]
P. T. Rahne
Affiliation:
Indian Institute of Astrophysics, 2nd Block, Koramangala, Bengaluru, 560034, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Simulations expect an enhanced star-formation and active galactic nuclei (AGN) activity during galaxy mergers, which can lead to formation of binary/dual AGN. AGN feedback can enhance or suppress star-formation. We have carried out a pilot study of a sample of ˜10 dual nuclei galaxies with AstroSat’s Ultraviolet Imaging Telescope (UVIT). Here, we present the initial results for two sample galaxies (Mrk 739, ESO 509) and deep multi-wavelength data of another galaxy (Mrk 212). UVIT observations have revealed signatures of positive AGN feedback in Mrk 739 and Mrk 212, and negative feedback in ESO 509. Deeper UVIT observations have recently been approved; these will provide better constraints on star-formation as well as AGN feedback in these systems.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barnes, J. E., and Hernquist, L., 1992, ARAA, 30, 705 10.1146/annurev.aa.30.090192.003421CrossRefGoogle Scholar
Bournaud, F., 2010, arXiv0909.1812 10.1155/2010/735284CrossRefGoogle Scholar
Duc, P.-A., Brinks, E., Springel, V., et al. 2000, AJ, 120, 1238 10.1086/301516CrossRefGoogle Scholar
Ellison, S. L., Mendel, J. T., Patton, D. R., & Scudder, J. M. 2013, MNRAS, 435, 3627 10.1093/mnras/stt1562CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D., Rees, M. J., 1980, Nature, 287, 307 10.1038/287307a0CrossRefGoogle Scholar
Ishibashi, W., and Fabian, A. C., 2012, MNRAS, 427, 2998 10.1111/j.1365-2966.2012.22074.xCrossRefGoogle Scholar
Harrison, C. M., 2017, Nature Astronomy, 1, 0165 10.1038/s41550-017-0165CrossRefGoogle Scholar
Kumar, A., et al., 2012, SPIE Conference Series, Vol. 8443, procspie, p. 84431NGoogle Scholar
Koss, M., Mushotzky, R., Treister, E., et al. 2012, ApJ, 746L, 22 10.1088/2041-8205/746/2/L22CrossRefGoogle Scholar
Mezcua, M., Lobanov, A. P., Mediavilla, E., and Karouzos, M., 2014, ApJ, 784, 16 10.1088/0004-637X/784/1/16CrossRefGoogle Scholar
Hernandez Ibarra, F., et al., 2016, MNRAS, 459, 291 10.1093/mnras/stw480CrossRefGoogle Scholar
Pearson, W. J., et al., 2019, AA, 631, A51 10.1051/0004-6361/201936337CrossRefGoogle Scholar
Rubinur, K., Das, M., Kharb, P., Honey, M., 2017, MNRAS, 465, 4772 Google Scholar
Rubinur, K., Das, M., Kharb, P., 2019, MNRAS, 484, 4933 10.1093/mnras/stz334CrossRefGoogle Scholar
George, K., et al., 2019, MNRAS 487, 310210.1093/mnras/stz1443CrossRefGoogle Scholar