Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T02:07:26.098Z Has data issue: false hasContentIssue false

Ultraluminous X-ray source populations in the Chandra Source Catalog 2.0

Published online by Cambridge University Press:  30 December 2019

Konstantinos Kovlakas
Affiliation:
Department of Physics, University of Crete Voutes University Campus, 71003 Heraklion, Crete, Greece email: [email protected] Institute of Electronic Structure & Laser, Foundation for Research & Technology - Hellas Voutes University Campus, 71003 Heraklion, Crete, Greece
Andreas Zezas
Affiliation:
Department of Physics, University of Crete Voutes University Campus, 71003 Heraklion, Crete, Greece email: [email protected] Institute of Electronic Structure & Laser, Foundation for Research & Technology - Hellas Voutes University Campus, 71003 Heraklion, Crete, Greece Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138, USA
Jeff J. Andrews
Affiliation:
Department of Physics, University of Crete Voutes University Campus, 71003 Heraklion, Crete, Greece email: [email protected] Institute of Electronic Structure & Laser, Foundation for Research & Technology - Hellas Voutes University Campus, 71003 Heraklion, Crete, Greece
Antara Basu-Zych
Affiliation:
NASA Goddard Space Flight Center 8800 Greenbelt Rd, Greenbelt, MD 20771, USA CRESST, Department of Physics, University of Maryland Baltimore CountyBaltimore, MD 21250, USA
Tassos Fragos
Affiliation:
DARK, Niels Bohr Institute, University of CopenhagenJuliane Maries Vej 30, DK-2100 Copenhagen, Denmark Geneva Observatory, University of Geneva Chemin des Maillettes 51, 1290 Sauverny, Switzerland
Ann Hornschemeier
Affiliation:
NASA Goddard Space Flight Center 8800 Greenbelt Rd, Greenbelt, MD 20771, USA Department of Physics & Astronomy, Johns Hopkins University 3400 North Charles Street, Baltimore, MD 21218, USA
Bret Lehmer
Affiliation:
Department of Physics, University of Arkansas 825 West Dickson Street, Fayetteville, AR 72701, USA
Andrew Ptak
Affiliation:
NASA Goddard Space Flight Center 8800 Greenbelt Rd, Greenbelt, MD 20771, USA Department of Physics & Astronomy, Johns Hopkins University 3400 North Charles Street, Baltimore, MD 21218, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

. The nature and evolution of ultraluminous X-ray sources (ULXs) is an open problem in astrophysics. They challenge our current understanding of stellar compact objects and accretion physics. The recent discovery of pulsar ULXs further demonstrates the importance of this intriguing and rare class of objects.

In order to overcome the difficulties of directly studying the optical associations of ULXs, we generally resort in statistical studies of the stellar properties of their host galaxies. We present the largest such study based on the combination of Chandra archival data with the most complete galaxy catalog of the Local Universe. Incorporating robust distances and stellar population parameters based on associated multi-wavelength information, and we explore the association of ULXs with galaxies in the (star formation rate, stellar mass, metallicity) space.

We confirm the known correlation with morphology, star formation rate and stellar mass, while we find an excess of ULXs in dwarf galaxies, indicating dependence on age and metallicity.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Basu-Zych, A. R., Lehmer, B., Fragos, T., et al. 2016, ApJ, 818, 140 CrossRefGoogle Scholar
Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151 CrossRefGoogle Scholar
Brorby, M., Kaaret, P., & Feng, H. 2015, MNRAS, 448, 3374 CrossRefGoogle Scholar
Comparat, J., Maraston, C., Goddard, D., et al. 2017, arXiv:1711.06575Google Scholar
Evans, I. N., Primini, F. A., Glotfelty, K. J., et al. 2010, ApJS, 189, 37 CrossRefGoogle Scholar
Fragos, T., Lehmer, B., Tremmel, M., et al. 2013, ApJ, 764, 41 CrossRefGoogle Scholar
Fragos, T., Linden, T., Kalogera, V., & Sklias, P. 2015, ApJL, 802, L5 CrossRefGoogle Scholar
Grimm, H.-J., Gilfanov, M., & Sunyaev, R. 2003, MNRAS, 339, 793 CrossRefGoogle Scholar
Jarrett, T. H., Chester, T., Cutri, R., et al. 2000, AJ, 119, 2498 CrossRefGoogle Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E., & Huchra, J. P. 2003, AJ, 125, 525 CrossRefGoogle Scholar
Kaaret, P., Feng, H., & Roberts, T. P. 2017, ARAA, 55, 303 CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33 CrossRefGoogle Scholar
Kim, M., Wilkes, B. J., Kim, D.-W., et al. 2007, ApJ, 659, 29 CrossRefGoogle Scholar
Lang, D., Hogg, D. W., & Schlegel, D. J. 2016, AJ, 151, 36 CrossRefGoogle Scholar
Lehmer, B. D., Basu-Zych, A. R., Mineo, S., et al. 2016, ApJ, 825, 7 CrossRefGoogle Scholar
Linden, T., Kalogera, V., Sepinsky, J., et al. 2011, Evolution of Compact Binaries, 447, 121 Google Scholar
Madau, P., & Fragos, T. 2017, ApJ, 840, 39 CrossRefGoogle Scholar
Makarov, D., Prugniel, P., Terekhova, N., Courtois, H., & Vauglin, I. 2014, A&A, 570, A13 Google Scholar
Maragkoudakis, A., Zezas, A., Ashby, M. L. N., & Willner, S. P. 2017, MNRAS, 466, 1192 CrossRefGoogle Scholar
Marchant, P., Langer, N., Podsiadlowski, P., et al. 2017, A&A, 604, A55 Google Scholar
Paturel, G., Petit, C., Prugniel, P., et al. 2003, A&A, 412, 45 Google Scholar
Prestwich, A. H., Tsantaki, M., Zezas, A., et al. 2013, ApJ, 769, 92 CrossRefGoogle Scholar
Rodighiero, G., Daddi, E., Baronchelli, I., et al. 2011, ApjL, 739, L40 CrossRefGoogle Scholar
Salim, S., Lee, J. C., Janowiecki, S., et al. 2016, ApJS, 227, 2 CrossRefGoogle Scholar
Sánchez, S. F., Barrera-Ballesteros, J. K., Sánchez-Menguiano, L., et al. 2017, MNRAS, 469, 2121 CrossRefGoogle Scholar
Sanders, D. B., Mazzarella, J. M., Kim, D.-C., Surace, J. A., & Soifer, B. T. 2003, AJ, 126, 1607 CrossRefGoogle Scholar
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163 CrossRefGoogle Scholar
Steer, I., Madore, B. F., Mazzarella, J. M., et al. 2017, AJ, 153, 37 CrossRefGoogle Scholar
Swartz, D. A., Soria, R., Tennant, A. F., & Yukita, M. 2011, ApJ, 741, 49 CrossRefGoogle Scholar
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, Apj, 613, 898 CrossRefGoogle Scholar
Wang, L., Rowan-Robinson, M., Norberg, P., Heinis, S., & Han, J. 2014, MNRAS, 442, 2739 CrossRefGoogle Scholar
Wang, S., Qiu, Y., Liu, J., & Bregman, J. N. 2016, ApJ, 829, 20 CrossRefGoogle Scholar
Zhang, Z., Gilfanov, M., & Bogdán, Á. 2012, A&A, 546, A36 Google Scholar