Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T14:48:55.805Z Has data issue: false hasContentIssue false

Tracing the physical conditions of planet formation with molecular excitation

Published online by Cambridge University Press:  12 October 2020

Richard Teague*
Affiliation:
Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI48109, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the physical structure of the planet formation environment, the protoplanetary disk, is essential for the interpretation of high resolution observations of the dust and future observations of the magnetic field structure. Observations of multiple transitions of molecular species offers a unique view of the underlying physical structure through excitation analyses. Here we describe a new method to extract high-resolution spectra from low-resolution observations, then provide two case studies of how molecular excitation analyses were used to constrain the physical structure in TW Hya, the closest protoplanetary disk to Earth.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Andrews, S. M., Wilner, D. J., Zhu, Z., et al. 2016, ApJL, 820, L40 CrossRefGoogle Scholar
Andrews, S. M., Huang, J., Pérez, L. M., et al. 2018, ApJL, 869, L41 CrossRefGoogle Scholar
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., et al. 2018, AJ, 156, 58 CrossRefGoogle Scholar
Bergin, E. A., Cleeves, L. I., Gorti, U., et al. 2013, Nature, 493, 644 CrossRefGoogle Scholar
Bergner, J. B., Guzmán, V. G., Öberg, K. I., et al. 2018, ApJ, 857, 69 CrossRefGoogle Scholar
Cazzoletti, P., van Dishoeck, E. F., Visser, R., et al. 2018, A&A, 609, A93 Google Scholar
Chapillon, E., Guilloteau, S., Dutrey, A., et al. 2012, A&A, 537, A60 Google Scholar
Dutrey, A., Guilloteau, S., Piétu, V., et al. 2017, A&A, 607, A130 Google Scholar
Flaherty, K. M., Hughes, A. M., Teague, R., et al. 2018, ApJ, 856, 117 CrossRefGoogle Scholar
Goldsmith, P. F. & Langer, W. D. 1999, ApJ, 517, 209 CrossRefGoogle Scholar
Hily-Blant, P., Magalhaes, V., Kastner, J., et al. 2017, A&A, 603, L6 Google Scholar
Kalugina, Y. & Lique, F. 2015, MNRAS, 446, L21 CrossRefGoogle Scholar
Koch, E., Rosolowsky, E. & Leroy, A. K. 2018, RNAAS, 2, 220 Google Scholar
Lique, F., Spielfiedel, A., & Cernicharo, J. 2006, A&A, 451, 1125 Google Scholar
Loomis, R. A., Öberg, K. I., Andrews, S. M., et al. 2018a, AJ, 155, 182 CrossRefGoogle Scholar
Loomis, R. A., Cleeves, L. I., Öberg, K. I., et al. 2018b, ApJ, 859, 131 CrossRefGoogle Scholar
Schwarz, K. R., Bergin, E. A., Cleeves, L. I., et al. 2016, ApJ, 823, 91 CrossRefGoogle Scholar
Shirley, Y. L. 2015, PASP, 127, 299 CrossRefGoogle Scholar
Teague, R., Guilloteau, S., Semenov, D., et al. 2016, A&A, 592, A49 Google Scholar
Teague, R., Semenov, D., Gorti, U., et al. 2017, ApJ, 835, 228 CrossRefGoogle Scholar
Teague, R., Henning, T., Guilloteau, S., et al. 2018a, ApJ, 864, 133 CrossRefGoogle Scholar
Teague, R., Bae, J., Birnstiel, T., et al. 2018b, ApJ, 868, 113 CrossRefGoogle Scholar
Teague, R. 2019, The Journal of Open Source Software, 4, 1632 CrossRefGoogle Scholar
van Boekel, R., Henning, T., Menu, J., et al. 2017, ApJ, 837, 132 CrossRefGoogle Scholar
van der Tak, F. F. S., Black, J. H., Schöier, F. L., et al. 2007, A&A, 468, 627 Google Scholar
Yen, H.-W., Koch, P. M., Liu, H. B., et al. 2016, ApJ, 832, 204 CrossRefGoogle Scholar