Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T18:09:40.470Z Has data issue: false hasContentIssue false

Tidal disruption events seen in the XMM-Newton slew survey

Published online by Cambridge University Press:  23 June 2017

Richard Saxton
Affiliation:
XMM SOC, ESAC, Apartado 78, 28691 Villanueva de la Cañada, Madrid, Spain email: [email protected]
S. Komossa
Affiliation:
QianNan Normal University for Nationalities, Longshan Street, Duyun City of Guizhou Province, China
Andrew Read
Affiliation:
Dept. of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, U.K.
Paulina Lira
Affiliation:
Universidad de Chile, Observatorio Astronomico Nacional Cerro Calan, Santiago, Chile
Kate D. Alexander
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
Iain Steele
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool CH41 1LD, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

XMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t−5/3 but vary greatly in the early phase.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Alexander, K. D., et al. 2016, arXiv:1610.03861Google Scholar
Chandra, P., et al. 2012, ApJ Letters,750, L2 Google Scholar
Esquej, P., Saxton, R., Komossa, S., Read, A., & Freyberg, M. J. 2008, A&A, 489, 543 Google Scholar
Guillochon, J. & Ramirez-Ruiz, E. 2013, ApJ, 767, 25 CrossRefGoogle Scholar
Guillochon, J. & Ramirez-Ruiz, E. 2015, ApJ, 809, 166 Google Scholar
Hayasaki, K., Stone, N., & Loeb, A. 2013, MNRAS, 434, 909 Google Scholar
Holoien, T., Kochanek, C., Prieto, J., Stanek, K., Dong, S., et al. 2016, MNRAS, 455, 2918 Google Scholar
Holoien, T., Kochanek, C., Prieto, J., Grupe, D., Chen, P., et al. 2016, arXiv:1602.01088Google Scholar
Khokhlov, A. & Melia, F. 1996, ApJ, 457, L61 Google Scholar
Komossa, S. & Bade, N. 1999, A&A, 343, 775 Google Scholar
Komossa, S., Halpern, J., Schartel, N., et al. 2004, ApJ, 603, L17 CrossRefGoogle Scholar
Komossa, S. 2015, JHEAp, 7, 148 Google Scholar
Krolik, J., et al. 2016, ApJ, 827, 127 Google Scholar
Leloudas, G., Fraser, M., Stone, N., van Velzen, S., Jonker, P. G., et al. 2016, arXiv:160902927Google Scholar
Liu, F., Li, S., & Komossa, K. 2014, ApJ, 786, 103 Google Scholar
Mainetti, D, Campana, S. & Colpi, M. 2016, A&A, 592, 41 Google Scholar
Margutti, R., et al. 2016, arXiv:1610.01632Google Scholar
Nikolajuk, M. & Walter, R. 2013, A&A, 552, 75 Google Scholar
Rees, M. 1988, Nature, 333, 523 Google Scholar
Saxton, R., Read, A., Esquej, P., et al. 2012, A&A, 541, 106 Google Scholar
Saxton, R., Read, A., Komossa, S., et al. 2014, A&A, 572, 1 Google Scholar
Saxton, R., et al. 2015, MNRAS, 454, 2798 CrossRefGoogle Scholar
Saxton, R., Read, A., Komossa, S., et al. 2017, A&A, 598, A29 Google Scholar
Shiokawa, H., Krolik, J., Cheng, R., Piran, T., & Noble, S. 2015, ApJ, 804, 85 Google Scholar
Stone, N. & Metzger, B. 2016, MNRAS, 455, 859 Google Scholar
Stritzinger, M, Taddia, F., Fransson, C., et al. 2012, ApJ, 756, 173 Google Scholar
Ulmer, A. 1999, ApJ, 514, 180 Google Scholar