Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T00:58:35.307Z Has data issue: false hasContentIssue false

Structure and kinematics of the Bootes filament

Published online by Cambridge University Press:  12 October 2016

O. Nasonova
Affiliation:
Special Astrophysical Observatory of RAS, Nizhnij Arkhyz, Russia
I. Karachentsev
Affiliation:
Special Astrophysical Observatory of RAS, Nizhnij Arkhyz, Russia
V. Karachentseva
Affiliation:
Main Astronomical Observatory of NASU, Kyiv, Ukraine
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bootes filament of galaxies is a dispersed chain of groups residing on sky between the Local Void and the Virgo cluster. We consider a sample of 361 galaxies inside the sky area of RA = 13h0...18h.5 and Dec = .5°... + 10° with radial velocities VLG < 2000 km/s to clarify its structure and kinematics. In this region, 161 galaxies have individual distance estimates. We use these data to draw the Hubble relation for galaxy groups, pairs as well as the field galaxies, and to examine the galaxy distribution on peculiar velocities. Our analysis exposes the known Virgo-centric infall at RA < 14h and some signs of outflow from the Local Void at RA > 17h. According to the galaxy grouping criterion, this complex contains the members of 13 groups, 11 pairs and 140 field galaxies. The most prominent group is dominated by NGC 5846. The Bootes filament contains the total stellar mass of 2.7 ×1012M⊙ and the total virial mass of 9.07×1013M⊙, having the average density of dark matter to be Ωm = 0.09, i.e. a factor three lower than the global cosmic value.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abazajian, K. N., Adelman-McCarthy, J. K., Agueros, M. A., et al. 2009, ApJS, 182, 54 CrossRefGoogle Scholar
Haynes, M. P., Giovanelli, R., Martin, A. M., et al. 2011, AJ, 142, 170 Google Scholar
Jones, D. H., Peterson, B. A., Colless, M., & Saunders, W. 2006, MNRAS, 369, 25 CrossRefGoogle Scholar
Karachentsev, I. D., Nasonova, O. G., & Courtois, H. M. 2011, ApJ, 743, 123 Google Scholar
Karachentsev, I. D. & Nasonova, O. G. 2013, MNRAS, 429, 2677 CrossRefGoogle Scholar
Karachentsev, I. D., Nasonova, O. G., & Courtois, H. M. 2013, MNRAS, 429, 2264 CrossRefGoogle Scholar
Karachentsev, I. D., Tully, R. B., Shaya, E. J., et al. 2014, ApJ, 782, 4 CrossRefGoogle Scholar
Makarov, D. I. & Karachentsev, I. D. 2011, MNRAS, 412, 2498 CrossRefGoogle Scholar
Nasonova, O. G. & Karachentsev, I. D. 2011, Astrophysics, 54, 1 CrossRefGoogle Scholar
Tully, R. B. & Fisher, R. J. 1977, A&A, 54, 661 Google Scholar
Zwaan, M. A., Staveley-Smith, L., Koribalski, B. S., et al. 2003, AJ, 125, 2842 CrossRefGoogle Scholar