Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T19:02:20.311Z Has data issue: false hasContentIssue false

The stellar populations of massive galaxies in the local Universe

Published online by Cambridge University Press:  17 July 2013

Richard M. McDermid*
Affiliation:
Gemini Observatory Northern Operations Centre, 670 N. A'ohoku Pl., Hilo HI 96720, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I present a brief review of the stellar population properties of massive galaxies, focusing on early-type galaxies in particular, with emphasis on recent results from the ATLAS3D Survey. I discuss the occurence of young stellar ages, cold gas, and ongoing star formation in early-type galaxies, the presence of which gives important clues to the evolutionary path of these galaxies. Consideration of empirical star formation histories gives a meaningful picture of galaxy stellar population properties, and allows accurate comparison of mass estimates from populations and dynamics. This has recently provided strong evidence of a non-universal IMF, as supported by other recent evidences. Spatially-resolved studies of stellar populations are also crucial to connect distinct components within galaxies to spatial structures seen in other wavelengths or parameters. Stellar populations in the faint outer envelopes of early-type galaxies are a formidable frontier for observers, but promise to put constraints on the ratio of accreted stellar mass versus that formed ‘in situ’ - a key feature of recent galaxy formation models. Galaxy environment appears to play a key role in controlling the stellar population properties of low mass galaxies. Simulations remind us, however, that current day galaxies are the product of a complex assembly and environment history, which gives rise to the trends we see. This has strong implications for our interpretation of environmental trends.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Acquaviva, V., Gawiser, E., & Guaita, L. 2011, ApJ, 737, 47Google Scholar
Alatalo, K., Blitz, L., Young, L. M., et al. 2011, ApJ, 735, 88Google Scholar
Alatalo, K., Davis, T. A., Bureau, M., et al. 2012, arXiv:1210.5524Google Scholar
Arnold, J. A., Romanowsky, A. J., Brodie, J. P., et al. 2011, ApJ, 736, L26Google Scholar
Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. 2004, ApJ, 600, 681Google Scholar
Baldry, I. K., Balogh, M. L., Bower, R. G., et al. 2006, MNRAS, 373, 469CrossRefGoogle Scholar
Cappellari, M. & Emsellem, E. 2004, PASP, 116, 138CrossRefGoogle Scholar
Cappellari, M., Bacon, R., Bureau, M., et al. 2006, MNRAS, 366, 1126Google Scholar
Cappellari, M. 2008, MNRAS, 390, 71Google Scholar
Cappellari, M., Emsellem, E., Krajnović, D., et al. 2011, MNRAS, 413, 813Google Scholar
Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2012a, Nature, 484, 485CrossRefGoogle Scholar
Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2012b, arXiv:1208.3523Google Scholar
Coccato, L., Gerhard, O., & Arnaboldi, M. 2010, MNRAS, 407, L26CrossRefGoogle Scholar
Conroy, C. & van Dokkum, P. 2012, ApJ, 747, 69Google Scholar
Davis, T. A., Alatalo, K., Sarzi, M., et al. 2011, MNRAS, 417, 882Google Scholar
Davis, T. A., Krajnović, D., McDermid, R. M., et al. 2012, MNRAS, 426, 1574CrossRefGoogle Scholar
De Lucia, G., Weinmann, S., Poggianti, B. M., et al. 2012, MNRAS, 423, 1277Google Scholar
Duc, P.-A., Cuillandre, J.-C., Serra, P., et al. 2011, MNRAS, 417, 863CrossRefGoogle Scholar
Emsellem, E., Monnet, G., & Bacon, R. 1994, A&A, 285, 723Google Scholar
Faber, S. M., Willmer, C. N. A., Wolf, C., et al. 2007, ApJ, 665, 265Google Scholar
Ferreras, I., La Barbera, F., de Carvalho, R. R., et al. 2013, MNRAS, 429, 15CrossRefGoogle Scholar
Foster, C., Proctor, R. N., Forbes, D. A., et al. 2009, MNRAS, 400, 2135CrossRefGoogle Scholar
González, J. J. 1993, Ph.D. ThesisGoogle Scholar
Graves, G. J., Faber, S. M., & Schiavon, R. P. 2009, ApJ, 693, 486CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33Google Scholar
Kaviraj, S., Schawinski, K., Devriendt, J. E. G., et al. 2007, ApJS, 173, 619Google Scholar
Kuntschner, H., Emsellem, E., Bacon, R., et al. 2010, MNRAS, 408, 97Google Scholar
La Barbera, F., Ferreras, I., de Carvalho, R. R., et al. 2012, MNRAS, 426, 2300Google Scholar
McGee, S. L., Balogh, M. L., Bower, R. G., et al. 2009, MNRAS, 400, 937Google Scholar
Monnet, G., Bacon, R., & Emsellem, E. 1992, A&A, 253, 366Google Scholar
Morganti, R., de Zeeuw, P. T., Oosterloo, T. A., et al. 2006, MNRAS, 371, 157Google Scholar
Ocvirk, P., Pichon, C., Lançon, A., & Thiébaut, E. 2006, MNRAS, 365, 74Google Scholar
Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H., & Burkert, A. 2010, ApJ, 725, 2312CrossRefGoogle Scholar
Peng, Y.-j., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721, 193Google Scholar
Pforr, J., Maraston, C., & Tonini, C. 2012, MNRAS, 422, 3285Google Scholar
Sánchez-Blázquez, P., Peletier, R. F., Jiménez-Vicente, J., et al. 2006, MNRAS, 371, 703CrossRefGoogle Scholar
Schawinski, K., Thomas, D., Sarzi, M., et al. 2007, MNRAS, 382, 1415Google Scholar
Scott, N., Cappellari, M., Davies, R. L., et al. 2009, MNRAS, 398, 1835Google Scholar
Serra, P., Oosterloo, T., Morganti, R., et al. 2012, MNRAS, 422, 1835Google Scholar
Shapiro, K. L., Falcón-Barroso, J., van de Ven, G., et al. 2010, MNRAS, 402, 2140Google Scholar
Smith, R. J., Lucey, J. R., Price, J., Hudson, M. J., & Phillipps, S. 2012a, MNRAS, 419, 3167Google Scholar
Smith, R. J., Lucey, J. R., & Carter, D. 2012b, MNRAS, 426, 2994Google Scholar
Spiniello, C., Trager, S. C., Koopmans, L. V. E., & Chen, Y. P. 2012, ApJ, 753, L32Google Scholar
Thomas, D., Maraston, C., Bender, R. & Mendes de Oliveira, C. 2005, ApJ, 621, 673CrossRefGoogle Scholar
Thomas, D., Maraston, C., Schawinski, K., Sarzi, M., & Silk, J. 2010, MNRAS, 404, 1775Google Scholar
Trager, S. C., Faber, S. M., Worthey, G., & González, J. J. 2000, AJ, 119, 1645Google Scholar
Treu, T., Auger, M. W., Koopmans, L. V. E., et al. 2010, ApJ, 709, 1195Google Scholar
van Dokkum, P. G. & Conroy, C. 2010, Nature, 468, 940Google Scholar
Vazdekis, A., Ricciardelli, E., Cenarro, A. J., et al. 2012, MNRAS, 424, 157Google Scholar
Vollmer, B., Soida, M., Chung, A., et al. 2010, A&A, 512, A36Google Scholar
Weijmans, A.-M., Cappellari, M., Bacon, R., et al. 2009, MNRAS, 398, 561Google Scholar
Young, L. M., Bureau, M., & Cappellari, M. 2008, ApJ, 676, 317CrossRefGoogle Scholar
Young, L. M., Bureau, M., Davis, T. A., et al. 2011, MNRAS, 414, 940Google Scholar