Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T16:59:33.977Z Has data issue: false hasContentIssue false

Star Formation and the Atomic-Molecular Transition

Published online by Cambridge University Press:  21 March 2013

Mark R. Krumholz*
Affiliation:
Department of Astronomy, University of California, Santa Cruz, Santa Cruz, CA 95064, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the last decade large surveys have allowed us to separate the atomic and molecular phases of the interstellar media in a wide variety of galaxies, and to determine how each of these phases correlates with star formation. The most striking results of these observations have been that the transition from H i to H2 occurs at a characteristic gas column density that depends on metallicity, and that star formation correlates primarily with the molecular phase. These observations have stimulated a burst of theoretical work, which I review here. The work can be broken into three primary questions: what physical mechanisms control the H i to H2 transition? Why does star formation correlate with H2 and not with some other phase of the ISM? Finally, what are the implications of the answers to the previous two questions for our understanding of star formation on the cosmological scale? I discuss our current best answers to each of these questions, and conclude with prospects for future work.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2012, ApJL, submitted, arXiv:1209.3013Google Scholar
Bigiel, F., Leroy, A., Walter, F., et al. 2010, AJ, 140, 1194CrossRefGoogle Scholar
Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846Google Scholar
Bolatto, A. D., Leroy, A. K., Jameson, K., et al. 2011, ApJ, 741, 12CrossRefGoogle Scholar
Bouché, N., Dekel, A., Genzel, R., et al. 2010, ApJ, 718, 1001CrossRefGoogle Scholar
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2010, ApJL, 709, L133CrossRefGoogle Scholar
Braun, R. 2012, ApJ, 749, 87CrossRefGoogle Scholar
Choi, J.-H. & Nagamine, K. 2012, MNRAS, 419, 1280Google Scholar
Christensen, C., Quinn, T., Governato, F., et al. 2012, MNRAS, 425, 3058Google Scholar
Cirasuolo, M., McLure, R. J., Dunlop, J. S., et al. 2010, MNRAS, 401, 1166CrossRefGoogle Scholar
Draine, B. T. & Bertoldi, F. 1996, ApJ, 468, 269CrossRefGoogle Scholar
Fumagalli, M., Krumholz, M. R., & Hunt, L. K. 2010, ApJ, 722, 919Google Scholar
Glover, S. C. O., & Clark, P. C. 2012a, MNRAS, 421, 9Google Scholar
Glover, S. C. O., & Clark, P. C. 2012b, MNRAS, in press, arXiv:1203.4251Google Scholar
Glover, S. C. O. & Mac Low, M.-M. 2007, ApJ, 659, 1317CrossRefGoogle Scholar
Gnedin, N. Y. & Kravtsov, A. V. 2010, ApJ, 714, 287Google Scholar
Gnedin, N. Y., Tassis, K., & Kravtsov, A. V. 2009, ApJ, 697, 55Google Scholar
Hopkins, A. M. & Beacom, J. F. 2006, ApJ, 651, 142Google Scholar
Kawamura, A., Mizuno, Y., Minamidani, T., et al. 2009, ApJS, 184, 1CrossRefGoogle Scholar
Kennicutt, R. C. Jr. 1998, ARA&A, 36, 189Google Scholar
Kennicutt, R. C. Jr., Calzetti, D., Walter, F., et al. 2007, ApJ, 671, 333Google Scholar
Krumholz, M. R. 2012, ApJ, in press, arXiv:1208.1504Google Scholar
Krumholz, M. R. & Dekel, A. 2012, ApJ, 753, 16CrossRefGoogle Scholar
Krumholz, M. R., Ellison, S. L., Prochaska, J. X., & Tumlinson, J. 2009a, ApJL, 701, L12CrossRefGoogle Scholar
Krumholz, M. R. & Gnedin, N. Y. 2011, ApJ, 729, 36Google Scholar
Krumholz, M. R., Leroy, A. K., & McKee, C. F. 2011, ApJ, 731, 25Google Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2008, ApJ, 689, 865CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009b, ApJ, 693, 216CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009c, ApJ, 699, 850CrossRefGoogle Scholar
Kuhlen, M., Krumholz, M. R., Madau, P., Smith, B. D., & Wise, J. 2012, ApJ, 749, 36CrossRefGoogle Scholar
Lee, M.-Y., Stanimirović, S., Douglas, K. A., et al. 2012, ApJ, 748, 75Google Scholar
Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782CrossRefGoogle Scholar
Leroy, A. K., Bolatto, A., Gordon, K., et al. 2011, ApJ, 737, 12Google Scholar
Liszt, H. 2002, A&A, 389, 393Google Scholar
Mac Low, M.-M. & Glover, S. C. O. 2012, ApJ, 746, 135Google Scholar
McKee, C. F. & Krumholz, M. R. 2010, ApJ, 709, 308Google Scholar
Neistein, E., van den Bosch, F. C., & Dekel, A. 2006, MNRAS, 372, 933Google Scholar
Neufeld, D. A. & Spaans, M. 1996, ApJ, 473, 894CrossRefGoogle Scholar
Omukai, K., Hosokawa, T., & Yoshida, N. 2010, ApJ, 722, 1793CrossRefGoogle Scholar
Rafelski, M., Wolfe, A. M., & Chen, H.-W. 2011, ApJ, 736, 48Google Scholar
Robertson, B. E. & Bullock, J. S. 2008, ApJL, 685, L27Google Scholar
Saintonge, A., Kauffmann, G., Wang, J., et al. 2011, MNRAS, 61Google Scholar
Schaye, J., Dalla Vecchia, C., Booth, C. M., et al. 2010, MNRAS, 402, 1536Google Scholar
Schruba, A., Leroy, A. K., Walter, F., et al. 2011, AJ, 142, 37Google Scholar
Sternberg, A. 1988, ApJ, 332, 400CrossRefGoogle Scholar
van Dishoeck, E. F. & Black, J. H. 1986, ApJS, 62, 109Google Scholar
Wild, V., Hewett, P. C., & Pettini, M. 2007, MNRAS, 374, 292CrossRefGoogle Scholar
Wolfe, A. M. & Chen, H.-W. 2006, ApJ, 652, 981Google Scholar
Wolfire, M. G., Tielens, A. G. G. M., Hollenbach, D., & Kaufman, M. J. 2008, ApJ, 680, 384CrossRefGoogle Scholar
Wong, T. & Blitz, L. 2002, ApJ, 569, 157Google Scholar