Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T04:12:24.708Z Has data issue: false hasContentIssue false

A shell model for turbulent dynamos

Published online by Cambridge University Press:  08 June 2011

G. Nigro
Affiliation:
Università della Calabria, Dipartimento di Fisica and Centro Nazionale Interuniversitario Struttura della Materia, Unità di Cosenza, I-87030 Arcavacata di Rende, Italy email: [email protected]
D. Perrone
Affiliation:
Università della Calabria, Dipartimento di Fisica and Centro Nazionale Interuniversitario Struttura della Materia, Unità di Cosenza, I-87030 Arcavacata di Rende, Italy email: [email protected]
P. Veltri
Affiliation:
Università della Calabria, Dipartimento di Fisica and Centro Nazionale Interuniversitario Struttura della Materia, Unità di Cosenza, I-87030 Arcavacata di Rende, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A self-consistent nonlinear dynamo model is presented. The nonlinear behavior of the plasma at small scale is described by using a MHD shell model for fields fluctuations; this allow us to study the dynamo problem in a large parameter regime which characterizes the dynamo phenomenon in many natural systems and which is beyond the power of supercomputers at today. The model is able to reproduce dynamical situations in which the system can undergo transactions to different dynamo regimes. In one of these the large-scale magnetic field jumps between two states reproducing the magnetic polarity reversals. From the analysis of long time series of reversals we infer results about the statistics of persistence times, revealing the presence of hidden long-time correlations in the chaotic dynamo process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Kageyama, A., Miyagoshi, T., & Sato, T. 2008, Nature letters 454, 1106Google Scholar
Parker, E. N. 1955, ApJ 122, 293Google Scholar
Frick, P. & Sokoloff, D. 1998, Phys. Rev. E 57, 4155Google Scholar
Giuliani, P. & Carbone, V. 1998, Europhys. Lett. 43, 527Google Scholar
Jonkers, A. R. T. 2003, Phys. Earth and Planet. Int. 135, 253Google Scholar
Carbone, V. et al. . 2006, Phys. Rev. Lett. 96, 128501Google Scholar
Sorriso-Valvo, L. et al. . 2007, Phys. Earth Planet. Inter. 164, 197Google Scholar
Nigro, G. & Carbone, V. 2010, Phys. Rev. E 82, 016313Google Scholar