Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T12:46:21.210Z Has data issue: false hasContentIssue false

Resolved Spectroscopy of Gravitationally Lensed Galaxies at z≃2

Published online by Cambridge University Press:  09 February 2015

Tucker Jones*
Affiliation:
Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spatially resolved spectroscopy is even more powerful when combined with magnification by gravitational lensing. I discuss observations of lensed galaxies at z≃2 with spatial resolution reaching 100 parsecs. Near-IR integral field spectroscopy reveals the kinematics, distribution and physical properties of star forming regions, and gas-phase metallicity gradients. Roughly two thirds of observed galaxies are isolated systems with coherent velocity fields, large velocity dispersion, multiple giant star-forming regions, and negative gas-phase metallicity gradients, suggestive of inside-out growth in gravitationally unstable disks. The remainder are undergoing mergers and have shallower metallicity gradients, indicating mixing of the interstellar gas via gravitational interaction. The metallicity gradients in isolated galaxies are consistent with simulations using standard feedback prescriptions, whereas simulations with enhanced feedback predict shallower gradients. These measurements therefore constrain the growth of galaxies from mergers and star formation as well as the regulatory feedback.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Anglés-Alcázar, D., Davé, R., Özel, F., & Oppenheimer, B. D. 2014, ApJ, 782, 84Google Scholar
Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, ApJ, 706, 1364CrossRefGoogle Scholar
Genzel, R., Burkert, A., Bouché, N., et al. 2008, ApJ, 687, 59CrossRefGoogle Scholar
Gibson, B. K., Pilkington, K., Brook, C. B., Stinson, G. S., & Bailin, J. 2013, A&A, 554, A47Google Scholar
Jones, T. A., Swinbank, A. M., Ellis, R. S., Richard, J., & Stark, D. P. 2010, MNRAS, 404, 1247Google Scholar
Jones, T., Ellis, R., Jullo, E., & Richard, J. 2010, ApJ, 725, L176CrossRefGoogle Scholar
Jones, T., Ellis, R. S., Richard, J., & Jullo, E. 2013, ApJ, 765, 48Google Scholar
Livermore, R. C., Jones, T., Richard, J., et al. 2012, MNRAS, 427, 688Google Scholar
Maciel, W. J., Costa, R. D. D., & Uchida, M. M. M. 2003, A&A, 397, 667Google Scholar
Nesvadba, N. P. H., Lehnert, M. D., Eisenhauer, F., et al. 2006, ApJ, 650, 661Google Scholar
Rupke, D. S. N., Kewley, L. J., & Chien, L.-H. 2010, ApJ, 723, 1255Google Scholar
Sánchez, S. F., et al. 2014, A&A, 563, A49Google Scholar
Schmidt, K. B., et al. 2014, ApJ, 782, L36Google Scholar
Stark, D. P., Swinbank, A. M., Ellis, R. S., et al. 2008, Nature, 455, 775CrossRefGoogle Scholar
Swinbank, A. M., Webb, T. M., Richard, J., et al. 2009, MNRAS, 400, 1121Google Scholar
Swinbank, A. M., Sobral, D., Smail, I., Geach, J. E., Best, P. N., McCarthy, I. G., Crain, R. A., & Theuns, T. 2012, MNRAS, 426, 935CrossRefGoogle Scholar
Tacconi, L. J., Neri, R., Genzel, R., et al. 2013, ApJ, 768, 74Google Scholar
Vila-Costas, M. B. & Edmunds, M. G. 1992, MNRAS, 259, 121Google Scholar
Yuan, T.-T., Kewley, L. J., Swinbank, A. M., Richard, J., & Livermore, R. C. 2011, ApJ, 732, L14Google Scholar
Yuan, T.-T., Kewley, L. J., & Rich, J. 2013, ApJ, 767, 106CrossRefGoogle Scholar