Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T20:17:11.897Z Has data issue: false hasContentIssue false

Rapid mass segregation in young star clusters without substructure?

Published online by Cambridge University Press:  12 August 2011

C. Olczak
Affiliation:
Max-Planck-Institut für Astronomie, Heidelberg, Germany email: [email protected] National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing, China The Kavli Institute for Astronomy and Astrophysics at Peking University, Beijing, China
R. Spurzem
Affiliation:
National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing, China The Kavli Institute for Astronomy and Astrophysics at Peking University, Beijing, China Astronomisches Rechen-Institut, Universität Heidelberg, Heidelberg, Germany
Th. Henning
Affiliation:
Max-Planck-Institut für Astronomie, Heidelberg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The young star clusters we observe today are the building blocks of a new generation of stars and planets in our Galaxy and beyond. Despite their fundamental role we still lack knowledge about the initial conditions under which star clusters form and the impact of these often harsh environments on the formation and evolution of their stellar and substellar members.

We present recent results showing that mass segregation in realistic models of young star clusters occurs very quickly for subvirial spherical systems without substructure. This finding is a critical step to resolve the controversial debate on mass segregation in young star clusters and provides strong constraints on their initial conditions. The rapid concentration of massive stars is usually associated with strong gravitational interactions early on during cluster evolution and the subsequent formation of multiple systems and ejection of stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Aarseth, S., 2003, Gravitational N-body Simulations (Cambridge, Cambridge University Press, 2003, 430 p.).CrossRefGoogle Scholar
Aarseth, S. J., & Hills, J. G., 1972, A&A 21, 255.Google Scholar
Allison, R. J., Goodwin, S. P., Parker, R. J., de Grijs, R., Portegies Zwart, S. F., & Kouwenhoven, M. B. N., 2009, ApJ 700, L99.CrossRefGoogle Scholar
Ascenso, J., Alves, J., & Lago, M. T. V. T., 2009, A&A 495, 147.Google Scholar
Bonnell, I. A., & Davies, M. B., 1998, MNRAS 295, 691.CrossRefGoogle Scholar
Chen, L., de Grijs, R., & Zhao, J. L., 2007, AJ 134, 1368.CrossRefGoogle Scholar
Gouliermis, D., Keller, S. C., Kontizas, M., Kontizas, E., & Bellas-Velidis, I., 2004, A&A 416, 137.Google Scholar
Khalisi, E., Amaro-Seoane, P., & Spurzem, R., 2007, MNRAS 374, 703.CrossRefGoogle Scholar
Kroupa, P., 2001, MNRAS 322, 231.CrossRefGoogle Scholar
Lada, C. J. & Lada, E. A., 2003, ARA&A 41, 57.Google Scholar
McMillan, S. L. W., Vesperini, E., & Portegies Zwart, S. F., 2007, ApJ 655, L45.CrossRefGoogle Scholar
Moeckel, N. & Bonnell, I. A., 2009, MNRAS, 1370 0908.0253.Google Scholar
Raboud, D. & Mermilliod, J.-C., 1998, A&A 333, 897.Google Scholar
Spurzem, R. & Takahashi, K., 1995, MNRAS 272, 772.Google Scholar
Vesperini, E., McMillan, S. L. W., & Portegies Zwart, S., 2009, ApJ 698, 615.CrossRefGoogle Scholar
Xin-Yue, E., Zhi-Bo, J. & Yan-Ning, F., 2009, Chinese Astronomy and Astrophysics 33, 139.CrossRefGoogle Scholar