Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T04:18:12.675Z Has data issue: false hasContentIssue false

Pulsar timing array projects

Published online by Cambridge University Press:  06 January 2010

G. Hobbs*
Affiliation:
Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pulsars are amongst the most stable rotators known in the Universe. Over many years some millisecond pulsars rival the stability of atomic clocks. Comparing observations of many such stable pulsars may allow the first direct detection of gravitational waves, improve the Solar System planetary ephemeris and provide a means to study irregularities in terrestrial time scales. Here we review the goals and status of current and future pulsar timing array projects.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Cordes, J., Kramer, M., Lazio, T. J. W., Stappers, B. W., Backer, D. C., & Johnston, S. 2004, New Astronomy Reviews, 48, 1413CrossRefGoogle Scholar
Detweiler, S. 1979, ApJ, 234, 1100CrossRefGoogle Scholar
Edwards, R., Hobbs, G., & Manchester, R. 2006, MNRAS, 372, 1549CrossRefGoogle Scholar
Foster, R. S. & Backer, D. C. 1990, ApJ, 361, 300CrossRefGoogle Scholar
Hellings, R. W. & Downs, G. S. 1983, ApJ, 265, L39CrossRefGoogle Scholar
Hobbs, G., Edwards, R., & Manchester, R. 2006, MNRAS, 369, 655CrossRefGoogle Scholar
Hobbs, G. 2008, Classical and Quantum Gravity, 25, 11CrossRefGoogle Scholar
Hobbs, G. et al. , 2009, MNRAS, 394, 1945CrossRefGoogle Scholar
Hotan, A. W., van Straten, W., & Manchester, R. N. 2004, PASA, 21, 302CrossRefGoogle Scholar
Hulse, R. A. & Taylor, J. H. 1974, ApJ, 191, L59CrossRefGoogle Scholar
Jenet, F. A., Hobbs, G., Lee, K. J., & Manchester, R. N. 2005, ApJ, 625, L123CrossRefGoogle Scholar
Jenet, F. A. et al. , 2006, ApJ, 653, 1571CrossRefGoogle Scholar
Johnston, S.. et al. , 2008, ExA, 22, 151Google Scholar
Kramer, M., Backer, B. W., Cordes, D. C., Lazio, J., Stappers, T. J. W., & Johnston, S. 2004, New Astronomy Reviews, 48, 993CrossRefGoogle Scholar
Kramer, M. et al. , 2006, Sci, 314, 97CrossRefGoogle Scholar
Lee, K. J., Jenet, F. A. & Price, R. H. 2008, ApJ, 685, 1304CrossRefGoogle Scholar
Lorimer, D. R. & Kramer, M. 2005, Handbook of Pulsar Astronomy, Cambridge University PressGoogle Scholar
Matsakis, D. N., Taylor, J. H, & Eubanks, T. M. 1997, A&A, 326, 924Google Scholar
Nan, R. D., Wang, Q. M., Zhu, L. C., Zhu, W. B., Jin, C. J., & Gan, H. Q. 2006, Chin. J. Astron. Astrophys., Suppl., 6, 304CrossRefGoogle Scholar
Rodin, A. 2008, MNRAS, 387, 1583CrossRefGoogle Scholar
Sazhin, M. V. 1978, SvA, 22, 36Google Scholar
Sesana, A., Haardt, F., & Madau, P. 2008, MNRAS, 390, 192CrossRefGoogle Scholar
Verbiest, J. et al. , 2008, MNRAS, 679, 675Google Scholar
Wen, Z. et al. 2009, “Constraining the coalescence rate of supermassive black-hole binaries using pulsar timing”, submitted to MNRASGoogle Scholar
Wolszczan, A. & Frail, D. A. 1992, Nature, 355, 145CrossRefGoogle Scholar