Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T00:15:06.742Z Has data issue: false hasContentIssue false

A Possible Dynamical History for the Fomalhaut System

Published online by Cambridge University Press:  27 January 2016

Virginie Faramaz*
Affiliation:
Instituto de Astrofísica - Pontificia Universidad Católica de Chile email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fomalhaut b was long thought to shape the eccentric debris belt in the Fomalhaut system, but its orbit was found to be too eccentric for it to be the dominant belt-shaping perturber. This indicates that Fomalhaut b is Earth-sized at most and that the belt-shaping perturber, hereafter named Fomalhaut c, remains to be discovered. In addition, since its orbit more or less crosses that of Fomalhaut b, it also indicates that the current configuration of the system is transient and was reached recently. In this talk, we show that this current configuration can be explained if Fomalhaut c is Saturn- to Neptune-sized, and Fomalhaut b originates from a mean-motion resonance with Fomalhaut c.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Beust, H., Augereau, J.-C., Bonsor, A., et al. 2014, A&A, 561, A43Google Scholar
Deller, A. T. & Maddison, S. T. 2005, ApJ, 625, 398CrossRefGoogle Scholar
Faramaz, V., Beust, H., Augereau, J.-C., Kalas, P., & Graham, J. R. 2015, A&A, 573, A87Google Scholar
Galicher, R., Marois, C., Zuckerman, B., & Macintosh, B. 2013, ApJ, 769, 42CrossRefGoogle Scholar
Janson, M., Carson, J. C., Lafrenière, D., et al. 2012, ApJ, 747, 116CrossRefGoogle Scholar
Kalas, P., Graham, J. R., Chiang, E., et al. 2008, Science, 322, 1345CrossRefGoogle Scholar
Kalas, P., Graham, J. R., & Clampin, M. 2005, Nature, 435, 1067Google Scholar
Kalas, P., Graham, J. R., Fitzgerald, M. P., & Clampin, M. 2013, ApJ, 775, 56CrossRefGoogle Scholar
Lebreton, J., van Lieshout, R., Augereau, J.-C., et al. 2013, A&A, 555, A146Google Scholar
Mamajek, E. E. 2012, ApJ, 754, L20CrossRefGoogle Scholar
Mamajek, E. E., Bartlett, J. L., Seifahrt, A., et al. 2013, AJ, 146, 154Google Scholar
Neuhäuser, R., Hohle, M. M., Ginski, C., et al. 2015, MNRAS, 448, 376CrossRefGoogle Scholar
Pearce, T. D., Wyatt, M. C., & Kennedy, G. M. 2015, MNRAS, 448, 3679CrossRefGoogle Scholar
Quillen, A. C. 2006, MNRAS, 372, L14Google Scholar
Shannon, A., Clarke, C., & Wyatt, M. 2014, MNRAS, 442, 142Google Scholar
van Leeuwen, F., ed. 2007, Astrophysics and Space Science Library, Vol. 350, Hipparcos, the New Reduction of the Raw DataCrossRefGoogle Scholar