Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T21:36:23.919Z Has data issue: false hasContentIssue false

Population III.1 stars: formation, feedback and evolution of the IMF

Published online by Cambridge University Press:  01 June 2008

Jonathan C. Tan*
Affiliation:
Dept. of Astronomy, University of Florida, Gainesville, FL 32611, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I discuss current theoretical expectations of how primordial, Pop III.1 stars form. Lack of direct observational constraints makes this a challenging task. In particular predicting the mass of these stars requires solving a series of problems, which all affect, perhaps drastically, the final outcome. While there is general agreement on the initial conditions, H2-cooled gas at the center of dark matter minihalos, the subsequent evolution is more uncertain. In particular, I describe the potential effects of dark matter annihilation heating, fragmentation within the minihalo, magnetic field amplification, and protostellar ionizing feedback. After these considerations, one expects that the first stars are massive ≳100M, with dark matter annihilation heating having the potential to raise this scale by large factors. Higher accretion rates in later-forming minihalos may cause the Pop III.1 initial mass function to evolve to higher masses.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93CrossRefGoogle Scholar
Adams, F. C., Ruden, S. P, & Shu, F. H. 1989, ApJ, 347, 959CrossRefGoogle Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531Google Scholar
Blackman, E. G. & Field, G. B. 2002, Phys. Rev. Lett., 89, 265007CrossRefGoogle Scholar
Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883CrossRefGoogle Scholar
Bromm, V., Coppi, P. S., & Larson, R. B. 2002, ApJ, 564, 23CrossRefGoogle Scholar
Bromm, V. & Loeb, A. 2002, ApJ, 575, 111111CrossRefGoogle Scholar
Bromm, V. & Loeb, A. 2004, New Astron., 9, 353CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., & Klessen, R. S. 2008, ApJ, 672, 757CrossRefGoogle Scholar
Ekström, S., Meynet, G., Chiappini, C., Hirschi, R., & Maeder, A. 2008, A&A, in press (arXiv:0807.0573)Google Scholar
Freese, K., Bodelheimer, P., Spolyar, D., & Gondolo, P. 2008, arXiv: 0806.0617Google Scholar
Gammie, C. F. 2001, ApJ, 553, 174CrossRefGoogle Scholar
Greif, T. H. & Bromm, V. 2006, MNRAS, 373, 128CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532CrossRefGoogle Scholar
Hollenbach, D., Johnstone, D., Lizano, S., & Shu, F. 1994, ApJ, 428, 654CrossRefGoogle Scholar
Hunter, C. 1977, ApJ, 218, 834CrossRefGoogle Scholar
Kashlinsky, A.Arendt, R., Gardner, J. P. et al. 2004, ApJ, 608, 1CrossRefGoogle Scholar
Krumholz, M. R. & Thompson, T. A. 2007, ApJ, 661, 1034CrossRefGoogle Scholar
Matzner, C. D. & McKee, C. F. 2000, ApJ, 545, 364CrossRefGoogle Scholar
McKee, C. F. & Tan, J. C. 2008, ApJ, 681, 771 (MT08)CrossRefGoogle Scholar
Morales, M. F. & Hewitt, J. 2004, ApJ, 615, 7CrossRefGoogle Scholar
Natarajan, A., Tan, J. C., & O'Shea, B. W. 2008, ApJ, submitted (arXiv:0807.3769)Google Scholar
Norman, M. L., O'Shea, B. W., & Paschos, P. 2004, ApJ, 601, L115CrossRefGoogle Scholar
Omukai, K. & Nishi, R. 1998, ApJ, 508, 141CrossRefGoogle Scholar
O'Shea, B. W. & Norman, M. L. 2007, ApJ, 654, 66CrossRefGoogle Scholar
Page, L., Hinshaw, G., Komatsu, E. et al. 2007, ApJS, 170, 335CrossRefGoogle Scholar
Ripamonti, E., Haardt, F., Ferrara, A., & Colpi, M.MNRAS, 334, 401CrossRefGoogle Scholar
Santos, M. R., Bromm, V., & Kamionkowski, M. 2002, MNRAS, 336, 1082CrossRefGoogle Scholar
Schaerer, D. 2002, A&A, 382, 28Google Scholar
Schaye, J., Aguirre, A., Kim, T-S. et al. 2003, ApJ, 596, 768CrossRefGoogle Scholar
Shu, F. H. 1977, ApJ, 214, 488CrossRefGoogle Scholar
Shu, F. H., Tremaine, S., Adams, F. C., & Ruden, S. P. 1990, ApJ, 358, 495CrossRefGoogle Scholar
Spolyar, D., Freese, K., & Gondolo, P., 2008, Physical Review Letters, 100, 051101CrossRefGoogle Scholar
Tan, J. C. & Blackman, E. G. 2004, ApJ, 603, 401 (TB04)CrossRefGoogle Scholar
Tan, J. C. & McKee, C. F. 2004, ApJ, 603, 383 (TM04)CrossRefGoogle Scholar
Tan, J. C. & McKee, C. F. 2008, First Stars III, eds. O'Shea, et al. , AIP Conf. Proc., 990, p47Google Scholar
Tegmark, M., Silk, J., Rees, M.J., Blanchard, A., Abel, T., & Palla, F. 1997, ApJ, 474, 1CrossRefGoogle Scholar
Thompson, R. I., Eisenstein, D., Fan, X. et al. 2007, ApJ, 657, 669CrossRefGoogle Scholar
Xu, H., O'Shea, B. W., Collins, D. C., et al. 2008, ApJ, submitted (arXiv:0807.2647)Google Scholar
Weinmann, S. M. & Lilly, S. J. 2005, ApJ, 624, 526CrossRefGoogle Scholar