Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T00:25:11.227Z Has data issue: false hasContentIssue false

The place of the Local Group in the cosmic web

Published online by Cambridge University Press:  12 October 2016

Jaime E. Forero-Romero
Affiliation:
Departamento de Física, Universidad de los Andes, Cra. 1 No. 18A-10, Edificio Ip Bogotá, Colombia email: [email protected]
Roberto González
Affiliation:
Instituto de Astrofísica, Pontificia Universidad Católica de ChileAv. Vicuña Mackenna 4860Santiago, Chile Centro de Astro-Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Santiago, Chile email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use the Bolshoi Simulation to find the most probable location of the Local Group (LG) in the cosmic web. Our LG simulacra are pairs of halos with isolation and kinematic properties consistent with observations. The cosmic web is defined using a tidal tensor approach. We find that the LG's preferred location is regions with a dark matter overdensity close to the cosmic average. This makes filaments and sheets the preferred environment. We also find a strong alignment between the LG and the cosmic web. The orbital angular momentum is preferentially perpendicular to the smallest tidal eigenvector, while the vector connecting the two halos is strongly aligned along the the smallest tidal eigenvector and perpendicular to the largest tidal eigenvector; the pair lies and moves along filaments and sheets. We do not find any evidence for an alignment between the spin of each halo in the pair and the cosmic web.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Forero-Romero, J. E., & González, R. E., ApJ accepted, ArXiv:1408.3166Google Scholar
Forero-Romero, J. E., Contreras, S., & Padilla, N. 2014, MNRAS, 443, 1090 CrossRefGoogle Scholar
Forero-Romero, J. E., Hoffman, Y., Bustamante, S., Gottlöber, S., & Yepes, G. 2013, ApJL, 767, L5 CrossRefGoogle Scholar
Forero-Romero, J. E., Hoffman, Y., Yepes, G., Gottlöber, S., Piontek, R., Klypin, A., & Steinmetz, M. 2011, MNRAS, 417, 1434 CrossRefGoogle Scholar
Forero-Romero, J. E., Hoffman, Y., Gottlöber, S., Klypin, A., & Yepes, G. 2009, MNRAS, 396, 1815 CrossRefGoogle Scholar
González, R. E., Kravtsov, A. V., & Gnedin, N. Y. 2013, ApJ, 770, 96 CrossRefGoogle Scholar
González, R. E., Kravtsov, A. V., & Gnedin, N. Y., 2014, ApJ, 793, 91 CrossRefGoogle Scholar
González, R. E. & Padilla, N. D. 2010, MNRAS, 407, 1449 CrossRefGoogle Scholar
Hoffman, Y., Metuki, O., Yepes, G., Gottlöber, S., Forero-Romero, J. E., Libeskind, N. I., Knebe, A., 2012, MNRAS, 425, 2049 CrossRefGoogle Scholar
Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011, ApJ, 740, 102 CrossRefGoogle Scholar
Klypin, A. & Holtzman, J. 1997, ArXiv:9712217Google Scholar
Riebe, K., Partl, A. M., Enke, H., Forero-Romero, J., Gottlöber, S., Klypin, A., Lemson, G., Prada, F., Primack, J. R., Steinmetz, M., & Turchaninov, V. 2013, Astronomische Nachrichten, 334, 691 CrossRefGoogle Scholar