Published online by Cambridge University Press: 09 February 2015
A relation between the stellar mass M and the gas-phase metallicity Z of galaxies, the MZR, is observed up to higher redshifts. It is a matter of debate, however, if the SFR is a second parameter in the MZR. To explore this issue at z > 1, we used VLT-SINFONI near-infrared (NIR) spectroscopy of eight zCOSMOS galaxies at 1.3 < z < 1.4 to measure the strengths of four emission lines: Hβ, [OIII]λ5007, Hα, and [NII]λ6584, additional to [OII]λ3727 measured from VIMOS. We derive reliable O/H metallicities based on five lines, and also SFRs from extinction corrected Hα measurements. We find that the MZR of these star-forming galaxies at z ≈ 1.4 is lower than the local SDSS MZR by a factor of three to five, a larger change than reported in the literature using [NII]/Hα-based metallicities from individual and stacked spectra. Correcting N2-based O/Hs using recent results by Newman et al. (2014), also the larger FMOS sample at z ∼ 1.4 of Zahid et al. (2014) shows a similar evolution of the MZR like the zCOSMOS objects. These observations seem also in agreement with a non-evolving FMR using the physically motivated formulation of the FMR from Lilly et al. (2013).