Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T09:07:06.280Z Has data issue: false hasContentIssue false

Origin and pulsation of hot subdwarfs

Published online by Cambridge University Press:  18 February 2014

S. K. Randall
Affiliation:
ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany email: [email protected]
G. Fontaine
Affiliation:
Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
S. Charpinet
Affiliation:
CNRS, Université de Toulouse, UPS-OMP, IRAP, 14 av. E. Belin, 31400, Toulouse, France
V. Van Grootel
Affiliation:
Institut d'Astrophysique et de Géophysique de l'Université de Liège, Allée du 6 Août 17, B-4000 Liège, Belgium
P. Brassard
Affiliation:
Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We briefly introduce hot subdwarfs and their evolutionary status before discussing the different types of known pulsators in more detail. Currently, at least six apparently distinct types of variable are known among hot subdwarfs, encompassing p- as well as g-mode pulsators and objects in the Galactic field as well as in globular clusters. Most of the oscillations detected can be explained in terms of an iron opacity mechanism, and quantitative asteroseismology has been very successful for some of the pulsators. In addition to helping constrain possible evolutionary scenarios, studies focussing on stellar pulsations have also been used to infer planets and characterize the rotation of the host star.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Ahmad, A. & Jeffery, C. S. 2005, A&A, 437, L51Google Scholar
Brassard, P., Fontaine, G., Billères, M., et al. 2001, ApJ, 563, 1013Google Scholar
Brown, T. M., Sweigart, A. V., Lanz, T., Landsman, W. B., & Hubeny, I. 2001, ApJ, 562, 368Google Scholar
Brown, T. M., Landsman, W. B., Randall, S. K., Sveigart, A. V., & Lanz, T. 2013, ApJ, 777, L22Google Scholar
Charpinet, S., Fontaine, G., Brassard, P., & Dorman, B. 1996, ApJ, 471, L103CrossRefGoogle Scholar
Charpinet, S., Fontaine, G., Brassard, P., et al. 1997, ApJ, 483, L123Google Scholar
Charpinet, S., Van Grootel, V., Reese, D., et al. 2008, A&A, 489, 377Google Scholar
Charpinet, S., Van Grootel, V., Fontaine, G., et al. 2011a, A&A, 530, A3Google Scholar
Charpinet, S., Fontaine, G., Brassard, P., et al. 2011b, Nature, 480, 496Google Scholar
Clausen, D. & Wade, R. A. 2011, ApJ, 733, L42Google Scholar
D'Antona, F., Bellazzini, M., Caloi, V., et al. 2005, ApJ, 631, 868CrossRefGoogle Scholar
Dorman, B., Rood, R. T., & O'Connell, R. W. 1993, ApJ, 419, 596CrossRefGoogle Scholar
Fontaine, G., Brassard, P., Charpinet, S., et al. 2003, ApJ, 597, 518Google Scholar
Fontaine, G., Brassard, P., Charpinet, S., & Chayer, P. 2006, MemSAIt, 77, 49Google Scholar
Fontaine, G., Brassard, P., Green, E. M., et al. 2008, A&A, 486, L39Google Scholar
Fontaine, G., Brassard, P., Charpinet, S., et al. 2012, A&A, 539, A12Google Scholar
Geier, S., Nesslinger, S., Heber, U., et al. 2008, A&A, 477, L13Google Scholar
Green, E. M., Fontaine, G., Reed, M. D., et al. 2003, ApJ, 583, L31CrossRefGoogle Scholar
Green, E. M., Guvenen, B., O'Malley, C. J., et al. 2011, ApJ, 734, 59Google Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N. 2002, MNRAS, 336, 449Google Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., & Marsh, T. R. 2003, MNRAS, 341, 669Google Scholar
Hu, H., Tout, C. A., Glebbeek, E., & Dupret, M.-A. 2011, MNRAS, 418, 195CrossRefGoogle Scholar
Johnson, C. B., Green, E. M., Wallace, S., et al. 2013, arXiv: 1308.1373Google Scholar
Kilkenny, D., Koen, C., O'Donoghue, D., & Stobie, R. S. 1997, MNRAS, 285, 640CrossRefGoogle Scholar
Latour, M., Fontaine, G., Brassard, P., et al. 2011, ApJ, 733, 100Google Scholar
Lutz, R., Schuh, S., & Silvotti, R. 2012, AN, 333, 1099Google Scholar
Maxted, P. F. L., Heber, U., Marsh, T. R., & North, R. C. 2001, MNRAS, 326, 1391Google Scholar
Miller Bertolami, M. M., Córsico, A. H., & Althaus, L. G. 2011, ApJ, 741, L3Google Scholar
Miller Bertolami, M. M., Córsico, A. H., Zhang, X., Althaus, L. G., & Jeffery, C. S. 2013, in: Montalbán, J., Noels, A., & Van Grootel, V. (eds.), Ageing Low Mass Stars: From Red Giants to White Dwarfs, European Physical Journal Web of Conferences, 43, 4004Google Scholar
Naslim, N., Jeffery, C. S., Behara, N. T., & Hibbert, A. 2011, MNRAS, 412, 363Google Scholar
Østensen, R. H. 2012, ASP-CS, 452, 233Google Scholar
Østensen, R. H., Silvotti, R., Charpinet, S., et al. 2010, MNRAS, 409, 1470Google Scholar
Pablo, H., Kawaler, S. D., Reed, M. D., et al. 2012, MNRAS, 422, 1343Google Scholar
Randall, S. K., Calamida, A., Fontaine, G., Bono, G., & Brassard, P. 2011, ApJ, 737, L27CrossRefGoogle Scholar
Randall, S. K., Calamida, A., Fontaine, G., et al. 2013, in: Montalbán, J., Noels, A., & Van Grootel, V. (eds.), Ageing Low Mass Stars: From Red Giants to White Dwarfs, European Physical Journal Web of Conferences, 43, 4006Google Scholar
Saio, H. & Jeffery, C. S. 2000, MNRAS, 313, 671Google Scholar
Schuh, S., Huber, J., Green, E. M., et al. 2005, ASP-CS, 334, 530Google Scholar
Silvotti, R., Schuh, S., Janulis, R., et al. 2007, Nature, 449, 189Google Scholar
Soker, N. 1998, AJ, 116, 1308Google Scholar
Van Grootel, V., Charpinet, S., Fontaine, G., et al. 2010a, ApJ, 718, L97Google Scholar
Van Grootel, V., Charpinet, S., Fontaine, G., Green, E. M., & Brassard, P. 2010b, A&A, 524, A63Google Scholar
Van Grootel, V., Charpinet, S., Brassard, P., Fontaine, G., & Green, E. M. 2013a, A&A, 553, A97Google Scholar
Van Grootel, V., Charpinet, S., Fontaine, G., Brassard, P., & Green, E. M. 2013b, ASP-CS, in pressGoogle Scholar
Woudt, P. A., Kilkenny, D., Zietsman, E., et al. 2006, MNRAS, 371, 1497CrossRefGoogle Scholar