Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T07:09:58.476Z Has data issue: false hasContentIssue false

Molecular evolution in star-forming cores: From prestellar cores to protostellar cores

Published online by Cambridge University Press:  01 February 2008

Yuri Aikawa
Affiliation:
Department of Earth and Plantary Sciences, Kobe University, Kobe 657-8501, Japan email: [email protected]
Valentine Wakelam
Affiliation:
Université Bordeaux I
Nami Sakai
Affiliation:
Department of Physics, University of Tokyo
R. T. Garrod
Affiliation:
Max-Planck-Institute für Radioastronomie
E. Herbst
Affiliation:
Departments of Physics, Chemistry, and Astronomy, The Ohio State University
Satoshi Yamamoto
Affiliation:
Department of Physics, University of Tokyo
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the molecular abundances in protostellar cores by solving the gas-grain chemical reaction network. As a physical model of the core, we adopt a result of one-dimensional radiation-hydrodynamics calculation, which follows the contraction of an initially hydrostatic prestellar core to form a protostellar core. Temporal variation of molecular abundances is solved in multiple infalling shells, which enable us to investigate the spatial distribution of molecules in the evolving core. The shells pass through the warm region of T ~ 20–100 K in several 104 yr and falls onto the central star in ~100 yr after they enter the region of T > 100 K. We found that the complex organic species such as HCOOCH3 are formed mainly via grain-surface reactions at T ~ 20–40 K, and then sublimated to the gas phase when the shell temperature reaches their sublimation temperatures (T ≥ 100 K). Carbon-chain species can be re-generated from sublimated CH4 via gas-phase and grain-surface reactions. HCO2+, which is recently detected towards L1527, are abundant at r = 100–2,000 AU, and its column density reaches ~1011 cm−2 in our model. If a core is isolated and irradiated directly by interstellar UV radiation, photo-dissociation of water ice produces OH, which reacts with CO to form CO2 efficiently. Complex species then become less abundant compared with the case of embedded core in ambient clouds. Although a circumstellar (protoplanetary) disk is not included in our core model, we can expect similar chemical reactions (i.e., production of large organic species, carbon-chains and HCO2+) to proceed in disk regions with T ~ 20–100 K.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aikawa, Y., Herbst, E., Roberts, H., & Caselli, P. 2005, ApJ, 620, 330CrossRefGoogle Scholar
Aikawa, Y., Wakelam, V., Herbst, E., & Garrod, R. T. 2008, ApJ, 674, 984Google Scholar
Chandler, C. J., Brogen, C. L., Shirley, Y. L., & Loinard, L. 2005, ApJ, 632, 371Google Scholar
Cazaux, E., Tielens, A. G. G. M., Ceccarelli, C., Castets, A., Wakelam, V., Caux, E., Parise, B., & Teyssier, D. 2003, ApJ (Letter), 593, L51Google Scholar
Ehrenfreund, P. & Shutte, W. A. 2000, in Astrochemistry: From Molecular Clouds to Planetary Systems, (Chelsea, MI; Sheridan Books; Astronomical Society of the Pacific), p. 135Google Scholar
Garrod, R. T. & Herbst, E. 2006, A&A, 457, 927Google Scholar
Geppert, W. D., et al. 2004, ApJ, 609, 459Google Scholar
Geppert, W. D., Thomas, R. D., Ehlerding, A., et al. 2006, Faraday Discuss., 133, 177Google Scholar
Horn, A., Møllendal, H., Sekiguchi, O., et al. 2004, ApJ, 611, 605Google Scholar
Kuan, Y.-J., Juang, H.-C., Charnley, S. B., Hirano, N., Takakuwa, S., Wilner, D. J., Liu, S.-Y., Ohashi, N., Bourke, T. L., Qi, C., & Zhang, Q. 2004, ApJ (Letter), 616, L27Google Scholar
Maret, S., Bergin, E. A., & Lada, C. J. 2006, Nature, 442, 425Google Scholar
Maret, S., Ceccarelli, C., Caux, E., Tielens, A. G. G. M., Jørgensen, J. K., van Dishoeck, E. F., Bacmann, A., Castets, A., Lefloch, B., Loinard, L., Parise, B., & Schöier, F. L. 2004, A&A, 416, 577Google Scholar
Maret, S., Ceccarelli, C., Tielens, A. G. G. M., Caux, E., Lefloch, B., Faure, A., Castet, A., & Flower, D. R. 2005, A&A, 442, 527Google Scholar
Masunaga, H. & Inutsuka, S. 2000, ApJ, 531, 350Google Scholar
Millar, T. J. & Hatchell, J. 1998, Faraday Discuss., 109, 15Google Scholar
Öberg, K., van Broekhuizen, F., Fraser, H. J., Bisschop, S. E., van Dishoeck, E. F., & Schlemmer, S. 2005, ApJ (Letter), 621, L33Google Scholar
Remijian, A. J. & Hollis, J. M. 2006, ApJ, 640, 842Google Scholar
Sakai, N., Sakai, T., Aikawa, Y., & Yamamoto, S. 2008b, ApJ (Letter) 675, L89Google Scholar
Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2008a, ApJ, 672, 371Google Scholar
Schöier, F. L., Jørgensen, J. K., van Dishoeck, E. F., & Blake, G. A. 2002, A&A, 391, 1001Google Scholar
Tafalla, M., Myers, P. C., Caselli, P., Walmsley, C. M., & Comito, C. 2002, ApJ, 569, 815Google Scholar