Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:18:00.663Z Has data issue: false hasContentIssue false

Modelling the properties of interstellar dust using the Si K-edge

Published online by Cambridge University Press:  12 October 2020

Sascha Zeegers
Affiliation:
ASIAA, Academia Sinica, 11F Astronomy-Mathematics Building, AS/NTU, No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C. email: [email protected] SRON, Sorbonnelaan, 2, 3584 CA, Utrecht, the Netherlands Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, the Netherlands
Elisa Costantini
Affiliation:
SRON, Sorbonnelaan, 2, 3584 CA, Utrecht, the Netherlands
Daniele Rogantini
Affiliation:
SRON, Sorbonnelaan, 2, 3584 CA, Utrecht, the Netherlands
Cor de Vries
Affiliation:
SRON, Sorbonnelaan, 2, 3584 CA, Utrecht, the Netherlands
Harald Mutschke
Affiliation:
Astrophysikalisches Institut und Universitäts-Sternwarte (AIU), Schillergäßchen 2-3, 07745 Jena, Germany
Frank de Groot
Affiliation:
Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
Alexander Tielens
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The properties of interstellar dust (ID) can be studied in great detail by making use of X-ray spectroscopy techniques. The radiation of X-rays sources is scattered and absorbed by dust grains in the interstellar medium. The X-ray band is especially suitable to study silicates - one of the main components of ID -since it contains the absorption edges of Si, Mg, O and Fe. In the Galaxy, we can use absorption features in the spectra of X-ray binaries to study the size distribution, composition and crystalline structure of grains. In order to derive these properties, it is necessary to acquire a database of detailed extinction cross sections models, that reflects the composition of the dust in the interstellar medium. We present the extinction profiles of a set of newly acquired measurements of 14 dust analogues at the Soleil Synchrotron facility in Paris, where we focus on silicates and the Si-K edge in particular, which is modelled with unprecedented accuracy. These models are used to analyse ID in the dense environments of the Galaxy.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Costantini, E. Pinto, C., Kaastra, J. S., et al. 2012, A&A, 539, A32Google Scholar
Draine, B. T. 2003, ApJ, 598, 1026CrossRefGoogle Scholar
Flank, A. M., Cauchon, G. Lagarde, P., et al. 2006, Nucl. Instrum. Methods Phys. Res. B, 246, 269CrossRefGoogle Scholar
Greenberg, J. M. 1968, University of Chicago Press, Interstellar Grains p. 221Google Scholar
Jenkins, E. B. 2009, ApJ, 700, 1299CrossRefGoogle Scholar
Kaastra, J. S., Mewe, R., & Nieuwenhuijzen, H. 1996, UV & X-ray Spectroscopy, p. 411Google Scholar
Kemper, F. Vriend, W. J., & Tielens, A. G. G. M. 2004, ApJ, 609, 826CrossRefGoogle Scholar
Lee, J. C., Xiang, J, Ravel, B., et al. 2009, ApJ, 702, 970Google Scholar
Mathis, J. S., Rumpl, W., & Norsieck, K. H. 1977, ApJ, 302, 371Google Scholar
Meurant, G. 1983, Solid State Physics, Elsevier Science, Number v. 37Google Scholar
Rogantini, D. Costantini, E., Zeegers, S. T., et al. 2018, Meteoritics, 609, A22Google Scholar
Tielens, A. G. G. M. 2001, Astronomical Society of Pacific Conference series, 231, 92Google Scholar
Tielens, A. G. G. M. 2001, Astronomical Society of Pacific Conference series, 231, 92Google Scholar
Wiscombe, W. J, 1980, Appl. Opt., 19, 1505CrossRefGoogle Scholar
Zeegers, S. T., Costantini, E. de Vries, C. P., et al. 2017, A&A, 599, A117Google Scholar
Zeegers, S. T., Costantini, E. Rogantini, D., et al. 2019, A&A, 627, A16Google Scholar