Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T11:11:09.075Z Has data issue: false hasContentIssue false

Magnetohydrodynamic equilibria in barotropic stars

Published online by Cambridge University Press:  07 August 2014

C. Armaza
Affiliation:
Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile email: [email protected]
A. Reisenegger
Affiliation:
Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile email: [email protected]
J. A. Valdivia
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
P. Marchant
Affiliation:
Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile email: [email protected] Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121, Bonn, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although barotropic matter does not constitute a realistic model for magnetic stars on short timescales, it would be interesting to confirm a recent conjecture that states that magnetized stars with a barotropic equation of state would be dynamically unstable (Reisenegger 2009). In this work we construct a set of barotropic equilibria, which can eventually be tested using a stability criterion. A general description of the ideal MHD equations governing these equilibria is summarized, allowing for both poloidal and toroidal magnetic field components. A new finite-difference numerical code is developed in order to solve the so-called Grad-Shafranov equation describing the equilibrium of these configurations, and some properties of the equilibria obtained are briefly discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Akgün, T., Reisenegger, A., Mastrano, A., & Marchant, P. 2013, MNRAS, 433, 2445Google Scholar
Braithwaite, J. 2009, MNRAS, 397, 763Google Scholar
Chandrasekhar, S. & Prendergast, K. H. 1956, Proc. Nat. Acad. Sci., 42, 5CrossRefGoogle Scholar
Ciolfi, R., Ferrari, V., Gualtieri, L. & Pons, J. A. 2009, MNRAS, 397, 913CrossRefGoogle Scholar
Ciolfi, R. & Rezzolla, L. 2013, MNRAS, 435, L43CrossRefGoogle Scholar
Fujisawa, K., Yoshida, S., & Eriguchi, Y. 2012, MNRAS, 422, 434Google Scholar
Fujisawa, K. & Eriguchi, Y. 2013, MNRAS, 432, 1245Google Scholar
Grad, H. & Rubin, H. 1958, in Proc. 2st Int. Conf. on Peaceful Uses of Atomic Energy. United Nations, Geneva, 31, 190Google Scholar
Gourgouliatos, K. N., Cumming, A., Reisenegger, A., Armaza, C., Lyutikov, M., & Valdivia, J. A. 2013, MNRAS, 434, 2480Google Scholar
Haskell, B., Samuelsson, L., Glampedakis, K., & Andersson, N. 2008, MNRAS, 385, 531CrossRefGoogle Scholar
Hoyos, J., Reisenegger, A., & Valdivia, J. A. 2008, A&A, 487, 789Google Scholar
Lander, S. K. & Jones, D. I. 2009, MNRAS, 395, 2162Google Scholar
Lander, S. K. & Jones, D. I. 2012, MNRAS, 424, 482CrossRefGoogle Scholar
Reisenegger, A. 2009, A&A, 499, 557Google Scholar
Shafranov, V. D. 1966, in: Reviews of Plasma Physics, (New York: Cons. Bureau), 2, 103Google Scholar
Yoshida, S. & Eriguchi, Y. 2006, ApJS, 164, 156CrossRefGoogle Scholar