Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T14:36:02.920Z Has data issue: false hasContentIssue false

Magnetization, accretion, and outflows in young stellar objects

Published online by Cambridge University Press:  01 May 2007

Frank H. Shu
Affiliation:
Department of Physics, University of California, San Diego, CA 92093
Daniele Galli
Affiliation:
INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, Firenze I-50125, Italy
Susana Lizano
Affiliation:
CRyA, Universidad Nacional Autónoma de México, Apdo. Postal 72-3, 58089 Morelia, Mexico
Mike J. Cai
Affiliation:
Academia Sinica, Institute of Astronomy and Astrophysics, Taiwan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the theory of the formation and gravitational collapse of magnetized molecular cloud cores, leading to the birth of T Tauri stars surrounded by quasi-Keplerian disks whose accretion is driven by the magnetorotational instability (MRI). Some loss of magnetic flux during the collapse results typically in a dimensionless mass-to-flux ratio for the star plus disk of λ0 ≈ 4. Most of the mass ends up in the star, while almost all of the flux and the angular momentum ends up in the disk; therefore, a known mass for the central star implies a computable flux in the surrounding disk. A self-contained theory of the MRI that drives the viscous/resistive spreading in such circumstances then yields the disk radius needed to contain the flux trapped in the disk as a function of the age t. This theory yields analytic predictions of the distributions with distance ϖ from the central star of the surface density Σ(ϖ), the vertical magnetic field Bz(ϖ), and the (sub-Keplerian) angular rotation rate Ω (ϖ). We discuss the implications of this picture for disk-winds, X-winds, and funnel flows, and we summarize the global situation by giving the energy and angular-momentum budget for the overall problem.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Adams, F. C., & Shu, F. H. 2007, ApJ, submittedGoogle Scholar
Allen, A, Li, Z.-Y., & Shu, F. H. 2003, ApJ, 599, 363CrossRefGoogle Scholar
André, P., Belloche, A., Motte, F., & Peretto, N. 2007, A&A, in pressGoogle Scholar
Andrews, S. M., & Williams, J. P. 2007, ApJ, 659, 705Google Scholar
Balbus, S. A., & Hawley, J. F. 1998, Rev. Mod. Phys., 70, 1CrossRefGoogle Scholar
Basu, S., & Mouschovias, T. Ch., 1994, ApJ, 432, 720CrossRefGoogle Scholar
Blandford, R. D., & Payne, D. G. 1982, MNRAS, 199, 883CrossRefGoogle Scholar
Cai, M. J., Shang, H., Lin, H.-H., & Shu, F. H. 2007, ApJ, submittedGoogle Scholar
Crutcher, R. M., & Troland, T. H. 2006, in Triggered Star Formation in a Turbulent ISM, IAU Symp. No. 237, 25Google Scholar
D'Alessio, P., Calvet, N., Hartmann, L., Lizano, S., Canto, J. 1999, 527, 893CrossRefGoogle Scholar
Donati, J. F., Paletou, F., Bouvier, J., & Ferreira, J. 2005, Nature, 438, 466CrossRefGoogle Scholar
Edris, K. A., Fuller, G. A., Cohen, R. J., & Etoka, S. 2005, A&A, 434, 213Google Scholar
Elmegreen, B. G. 1993, ApJL, 419, L29CrossRefGoogle Scholar
Evans, N. J. 1999, ARAA, 37, 311CrossRefGoogle Scholar
Ferreira, J., Dougados, C., & Cabrit, S. 2006, A&A, 453, 785Google Scholar
Font, A. S., McCarthy, I. G., Johnstone, D., Ballantyne, D. R. 2004, ApJ, 607, 890CrossRefGoogle Scholar
Fromang, S., Hennebelle, P., & Teyssier, R. 2006, A&A, 457, 371Google Scholar
Fromang, S., & Papaloizou, J. 2007, Astro-ph 0705.3621Google Scholar
Galli, D., Lizano, S., Shu, F. H., & Allen, A. 2006, ApJ, 647, 374CrossRefGoogle Scholar
Gammie, C. F. 1996, ApJ, 457, 355CrossRefGoogle Scholar
Ghosh, P., & Lamb, F. K. 1978, ApJ, 223, L83CrossRefGoogle Scholar
Girart, J. M., Rao, R., & Marrone, D. 2006, Science, 313, 812CrossRefGoogle Scholar
Grad, H., & Rubin, H. 1958, in Proc. Conf. Internat. Atomic Energy Agency 31, (Geneva: Internat. Atomic Energy Agency)Google Scholar
Harvey, D.W.A., Wilner, D.J., Lada, C.J., Myers, P.C., Alves, J.F., & Chen, H. 2001, ApJ, 563, 903Google Scholar
Harvey, D.W.A., Wilner, D. J., DiFrancesco, J., Lee, C. W., Myers, P. C., Williams, J. P. 2002, AJ, 123, 3325CrossRefGoogle Scholar
Hawley, J. F., & Balbus, S. A. 1991, ApJ, 381, 496CrossRefGoogle Scholar
Heinemann, M., & Olbert, S. 1978, JGR, 83, 2457CrossRefGoogle Scholar
Hennebelle, P., & Fromang, S. 2007, A&A, submittedGoogle Scholar
Hutawarakorn, B., & Cohen, R. J. 1999, MNRAS, 303, 845CrossRefGoogle Scholar
Hutawarakorn, B., Cohen, R. J., & Brebner, G. C. 2002, MNRAS, 330, 349CrossRefGoogle Scholar
King, A. R., Pringle, J. E., & Livio, M. 2007, MNRAS, 376, 1740CrossRefGoogle Scholar
Klessen, R. S., Heitsch, F., & MacLow, M. 2001, ApJ, 535, 887CrossRefGoogle Scholar
Lada, C. J., Muensch, A. A., Rathborne, J., Alves, J. F., & Lombardi, M. 2007, ApJ, submittedGoogle Scholar
Lee, C. W., Myers, P. C., & Tafalla, M. 2001, ApJS, 136, 703CrossRefGoogle Scholar
Levy, E. H., & Sonett, C. P. 1978, in Protostars & Planets, ed. Gehrels, T. (Tucson: University of Arizona Press), p. 516Google Scholar
Li, Z.-Y., & Shu, F. H. 1996, ApJ, 472, 211CrossRefGoogle Scholar
Lizano, S., & Shu, F. H. 1989, ApJ, 342, 834CrossRefGoogle Scholar
Lubow, S. H., Papaloizou, J. C. B., & Pringle, J. E. 1994, MNRAS, 267, 235CrossRefGoogle Scholar
Mestel, L., & Spitzer, L. 1956, MNRAS, 116, 503CrossRefGoogle Scholar
Mohanty, S., & Shu, F. H. 2007, ApJ, in preparationGoogle Scholar
Najita, J. R., & Shu, F. H. 1994, ApJ, 429, 808CrossRefGoogle Scholar
Nakano, T. 1979, PASJ, 31, 697Google Scholar
Ostriker, E. C., & Shu, F. H. 1995, ApJ, 447, 813Google Scholar
Padoan, P. 1995, MNRAS, 277, 377CrossRefGoogle Scholar
Parker, E. N. 1963, Interplanetary Dynamical Processes (New York: Interscience Pub)Google Scholar
Price, D. J., & Bate, M.R. 2007, MNRAS, 337, 77Google Scholar
Rodríguez, L. F., Zapata, L. A., & Ho, P. T. P. 2007, ApJL, L143Google Scholar
Shafranov, V. D. 1966, Rev. Plasma Phys, 2, 103Google Scholar
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Shu, F. H. 1977, ApJ, 214, 488Google Scholar
Shang, H., Shu, F. H., & Glassgold, A. E. 1998, ApJ, 439, 91CrossRefGoogle Scholar
Shu, F. H. 1995, Rev Mex AA, 1, 375Google Scholar
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARAA, 25, 23Google Scholar
Shu, F. H., Galli, D., Lizano, S., & Cai, M. 2006, ApJ, 647, 382CrossRefGoogle Scholar
Shu, F. H., Gallli, D., Lizano, S., Glassgold, A. E., & Diamond, P. 2007, ApJ, 665, 535CrossRefGoogle Scholar
Shu, F. H., Lizano, S., Ruden, S. P., & Najita, J. 1988, ApJ, 328, L19CrossRefGoogle Scholar
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ, 429, 781CrossRefGoogle Scholar
Shu, F. H., Najita, J., Ostriker, E. C., & Shang, H. 1995 ApJ, 455, L155CrossRefGoogle Scholar
Stone, J. M., & Norman, M. L. 1992, ApJS, 80, 791CrossRefGoogle Scholar
Vázquez-Semadeni, E. 2005, in The Initial Mass Function 50 Years Later, eds. Corbelli, E., Palla, F., & Zinnecker, H. (Dordrecht: Springer), p. 371Google Scholar
Winnberg, A., Graham, D., Walmsley, C. M., & Booth, R. S. 1981, A&A, 93, 79Google Scholar