Hostname: page-component-6d856f89d9-72csx Total loading time: 0 Render date: 2024-07-16T06:20:41.013Z Has data issue: false hasContentIssue false

A leptonic/hadronic jet model for the low-mass microquasar XTE J1118+480

Published online by Cambridge University Press:  24 February 2011

Gabriela S. Vila
Affiliation:
Instituto Argentino de Radioastronomía, (CCT La Plata - CONICET), C.C. N°5 (1894), Villa Elisa, Buenos Aires, Argentina email: [email protected]
Gustavo E. Romero
Affiliation:
Instituto Argentino de Radioastronomía, (CCT La Plata - CONICET), C.C. N°5 (1894), Villa Elisa, Buenos Aires, Argentina email: [email protected] Facultad de Ciencias Astronómicas y Geofísicas (FCAG, UNLP), Paseo del Bosque s/n (1900), La Plata, Buenos Aires, Argentina email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a one–zone jet model that fits the data from simultaneous broadband radio-to-X-rays observations of XTE J1118+480. We calculate the radiative contribution to the non-thermal spectrum of both relativistic electrons and protons, as well as that from secondary muons, charged pions and electron-positron pairs produced at high-energy hadronic interactions. The distributions in energy of all the particle species are obtained taking into account the energy losses, injection, decay and escape from the emission region. We also include absorption effects on the emission spectrum due to photon-photon annihilation. Finally, we discuss the detectability of XTE J1118+480 at high energies with the present instruments according to the predictions of our model for the gamma-ray band.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bouchet, L. et al. 2010, ApJ, 720, 1772CrossRefGoogle Scholar
Esin, A. et al. 2001, ApJ, 555, 483Google Scholar
Fender, R. et al. 2001, MNRAS, 322, L23L27Google Scholar
Frontera, F. et al. 2001, ApJ, 561, 1006CrossRefGoogle Scholar
Gelino, D. et al. 2006, ApJ, 642, 438CrossRefGoogle Scholar
Maitra, et al. 2009, MNRAS, 389, 1638CrossRefGoogle Scholar
Vila, G. S. & Romero, G. E. 2010, MNRAS, 403, 1457CrossRefGoogle Scholar
Weidenspointner, et al. 2008, Nature, 451, 159Google Scholar
Yuan, F. et al. 2005, ApJ, 620, 905CrossRefGoogle Scholar