Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T22:06:21.346Z Has data issue: false hasContentIssue false

Laboratory Studies on the Role of PAHs as DIB Carriers

Published online by Cambridge University Press:  21 February 2014

F. Huisken
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany email: [email protected]
G. Rouillé
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany email: [email protected]
M. Steglich
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany email: [email protected]
Y. Carpentier
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany email: [email protected]
C. Jäger
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena, Germany email: [email protected]
Th. Henning
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The electronic spectroscopy of various polycyclic aromatic hydrocarbon (PAH) molecules has been studied in the laboratory at low temperatures using both molecular beam and matrix isolation spectroscopy techniques. While molecular beam spectra can be readily compared to astronomical observations, the band positions measured in Ne and Ar matrices are extrapolated to obtain rather good estimates for the same transitions in the gas phase. Absolute absorption cross sections are determined for gas-phase and matrix spectra by comparing them with calibrated solution spectra. All laboratory results are analyzed and discussed in view of the role that PAHs can play as carriers of the diffuse interstellar bands (DIBs). Our studies suggest that regular neutral PAHs are not responsible for any of the known strong DIBs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Beegle, L. W., Wdowiak, T. J., Robinson, M. S., Cronin, J. R., McGehee, M. D., Clemett, S., & Gillette, S. 1997, ApJ, 487, 976CrossRefGoogle Scholar
Carpentier, Y., Rouillé, G., Steglich, M., Jäger, C., Henning, T., & Huisken, F. 2013, in: Schlemmer, S., Giesen, T., & Mutschke, H. (eds.) Modern Aspects in Laboratory Astrochemistry (WILEYVCH Verlag, Weinheim)Google Scholar
Draine, B. T. & Li, A. 2007, ApJ, 657, 810CrossRefGoogle Scholar
Heger, M. L. 1922, Lick Observatory Bulletin, 10, 146Google Scholar
Gredel, R., Carpentier, Y., Rouillé, G., Steglich, M., Huisken, F., & Henning, Th. 2011, A&A, 530, A26Google Scholar
Huisken, F., Rouillé, G., Carpentier, Y., Steglich, M., & Henning, T. 2011, AIP Conference Proceedings, 46, 293Google Scholar
Jäger, C., Huisken, F., Mutschke, H., Henning, Th., Poppitz, B., & Voicu, I. 2007, Carbon, 45, 2981Google Scholar
Jäger, C., Huisken, F., Mutschke, H., Llamas-Jansa, I., & Henning, Th. 2009, ApJ, 696, 706Google Scholar
Jenniskens, P. & Désert, F.-X. 1994, A&AS, 106, 39Google Scholar
Léger, A. & d'Hendecourt, L. 1985, A&A, 146, 81Google Scholar
Léger, A., d'Hendecourt, L., & Défourneau, D. 1989, A&A, 216, 148Google Scholar
O'Keefe, A. & Deacon, D. A. G. 1988, Rev. Sci. Instrum., 59, 2544Google Scholar
Rhee, Y. M., Lee, T. J., Gudipati, M. S., Allamandola, L. J., & Head-Gordon, M. 2007, PNAS, 104, 5274Google Scholar
Romanini, D., Biennier, L., Salama, F., Kachanov, A., Allamandola, L. J., & Stoeckel, F. 1999, Chem. Phys. Lett., 303, 165CrossRefGoogle Scholar
Rouillé, G., Arold, M., Staicu, A., Henning, T., & Huisken, F. 2009a, J. Phys. Chem. A, 113, 8187CrossRefGoogle Scholar
Rouillé, G., Arold, M., Staicu, A., Krasnokutski, S., Huisken, F., Henning, T., Tan, X., & Salama, F. 2007, J. Chem. Phys., 126, 174311Google Scholar
Rouillé, G., Jäger, C., Steglich, M., Huisken, F., Henning, T., Theumer, G., Bauer, I., & Knölker, H.-J. 2008, Chem. Phys. Chem., 9, 2085CrossRefGoogle Scholar
Rouillé, G., Steglich, M., Huisken, F., Henning, T., & Müllen, K. 2009b, J. Chem. Phys., 131, 204311Google Scholar
Rouillé, G., Sukhorukov, O., Staicu, A., Krasnokutski, S., Huisken, F., & Henning, Th. 2004, J. Chem. Phys., 120, 6028Google Scholar
Ruiterkamp, R., Halasinski, T., Salama, F., Foing, B. H., Allamandola, L. J., Schmidt, W., & Ehrenfreund, P. 2002, A&A, 390, 1153Google Scholar
Ruth, A. A., Kim, E.-K., & Hese, A. 1999, Phys. Chem. Chem. Phys., 1, 5121Google Scholar
Salama, F. 2008, in: Kwok, S. & Sandford, S. (eds.), Organic Matter in Space, Proc. IAU Symposium No. 251 (Cambridge University Press), p. 357Google Scholar
Salama, F., Galazutdinov, G. A., Krełowski, J., Allamandola, L. J., & Musaev, F. A. 1999, ApJ, 526, 265CrossRefGoogle Scholar
Salama, F., Galazutdinov, G. A., Krełowski, J., Biennier, L., Beletsky, Y., & Song, In-Ok 2011, ApJ, 728, 154Google Scholar
Staicu, A., Rouillé, G., Henning, Th., Huisken, F., & Pouladsaz, Scholz, R. 2008, J. Chem. Phys, 129, 047302Google Scholar
Staicu, A., Sukhorukov, O., Rouillé, G., Henning, T., & Huisken, F. 2004, Mol. Phys., 102, 1777Google Scholar
Steglich, M., Huisken, F., Dahl, J. E., Carlson, R. M. K., & Henning, T. 2011, ApJ, 729, 91CrossRefGoogle Scholar
Steglich, M., Carpentier, Y., Jäger, C., Huisken, F., Räder, H.-J., & Henning, T. 2012, A&A, 540, A110Google Scholar
Steglich, M., Jäger, C., Rouillé, G., Huisken, F., Mutschke, H., & Henning, T. 2010, ApJ., 712, L16CrossRefGoogle Scholar
Sukhorukov, O., Staicu, A., Diegel, E., Rouillé, G., Henning, T., & Huisken, F. 2004, Chem. Phys. Lett., 386, 259Google Scholar
Tielens, A. G. G. M. 2008, ARA&A, 46, 289Google Scholar
van der Zwet, G. P. & Allamandola, L. J. 1985, A&A, 146, 76Google Scholar
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2005, ApJ, 619, 368Google Scholar