Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T14:47:55.478Z Has data issue: false hasContentIssue false

Influence of longitudinal structure in the fast modes of prominence threads

Published online by Cambridge University Press:  01 September 2007

A. J. Díaz
Affiliation:
Universitat de les Illes Balears, Palma de Mallorca, Spain email: [email protected]
R. Oliver
Affiliation:
Universitat de les Illes Balears, Palma de Mallorca, Spain email: [email protected]
J. L. Ballester
Affiliation:
Universitat de les Illes Balears, Palma de Mallorca, Spain email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent high-resolution observations have pointed out that prominences are made of small threads (also named fibrils) piled up to form the body of the prominence. These fine structures also seem to support their own oscillatory modes, while their effect on the global modes of the prominences are less certain. We study the effect of adding a smooth transition layer between the prominence material and the corona along the magnetic field line, since previous studies have considered a jump in density in this interface. Then we compare the results with previous models and check that these transition layers do not affect significantly the periods of the modes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Andries, J., Arregui, I., & Goossens, M. 2005, Ap. J. L., 624, L57.Google Scholar
Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., & Van Doorsselaere, T. 2005, A&A, 430, 1109.Google Scholar
Díaz, A. J., Oliver, R., Erdélyi, R., & Ballester, J. L. 2001, Ap. J., 580, 550.CrossRefGoogle Scholar
Díaz, A. J., Oliver, R., & Ballester, J. L. 2002, Ap. J., 580, 550.Google Scholar
Díaz, A. J., Oliver, R., & Ballester, J. L. 2003, A&A, 402, 781.Google Scholar
Díaz, A. J., Oliver, R., Ballester, J. L., & Roberts, B. 2004, A&A, 424, 1055.Google Scholar
Díaz, A. J., Oliver, R., & Ballester, J. L. 2006, Ap. J., 645, 766.Google Scholar
Díaz, A. J., Donnelly, G. R., & Roberts, B. 2007, A&A, 476, 359.Google Scholar
Donnelly, G. R., Díaz, A. J., & Roberts, B. 2006, A&A, 457, 707.Google Scholar
Dymova, M. V. & Ruderman, M. S., 2006, A&A, 457, 1059.Google Scholar
Erdélyi, R., & Verth, G. 2007, A&A, 462, 743.Google Scholar
Goossens, M., Andries, J., & Arregui, I. 2007, Phil. Roy. Soc. A, 364, 433.CrossRefGoogle Scholar
Joarder, P. S., Nakariakov, V. M. & Roberts, B. 1997, Sol. Phys., 176, 285.Google Scholar
Lin, Y. 2004, PhD Thesis, Institute of Theoretical Astrophysics, Univ. of Oslo.Google Scholar
Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M., Wiik, J. E., & Berger, T. E. 2005, Sol. Phys., 226, 239.CrossRefGoogle Scholar
Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M., & van Noort, . 2007, Sol. Phys., 71.Google Scholar
James, L. 2003, Master Thesis, University of St Andrews.Google Scholar
McEwan, M. P., Donnelly, G. R., Díaz, A. J. & Roberts, B. 2006, A&A, 460, 893.Google Scholar
Mendoza-Briceño, C. A., Erdélyi, R., & Sigalotti, L. D. G. 2004, Ap. J., 605, 493.Google Scholar
Nakariakov, V. M. & Ofman, L. 2001, A&A, 372, L53.Google Scholar
Nakariakov, V. M., Verwichte, E., Berghmans, D. & Robbrecht, E. 2000, A&A, 362, 1151.Google Scholar
Verth, G., Van Doorsselaere, T., Erdélyi, R., & Goossens, M. 2007, A&A, 475, 341.Google Scholar