Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T17:04:31.049Z Has data issue: false hasContentIssue false

Imprint of First Stars Era in the Cosmic Infrared Background Fluctuations

Published online by Cambridge University Press:  01 December 2007

Alexander Kashlinsky*
Affiliation:
SSAI and Observational Cosmology Lab, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the latest results on Cosmic Infrared Background (CIB) fluctuations from early epochs from deep Spitzer data. The results show the existence of significant CIB fluctuations at the IRAC wavelengths (3.6 to 8 μm) which remain after removing galaxies down to very faint levels. These fluctuations must arise from populations with a significant clustering component, but only low levels of the shot noise. There are no correlations between the source-subtracted IRAC maps and the corresponding fields observed with the HST ACS at optical wavelengths. Taken together, these data imply that 1) the sources producing the CIB fluctuations are individually faint with Sν < a few nJy at 3.6 and 4.5 μm; 2) have different clustering pattern than the more recent galaxy populations; 3) are located within the first 0.7 Gyr (unless these fluctuations can somehow be produced by - so far unobserved - local galaxies of extremely low luminosity and with the unusual for local populations clustering pattern), 4) produce contribution to the net CIB flux of at least 1-2 nW m−2 sr−1 at 3.6 and 4.5 μm and must have mass-to-light ratio significantly below the present-day populations, and 5) they have angular density of ~ a few per arcsec2 and are in the confusion of the present day instruments, but can be individually observable with JWST.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bond, J. R., Carr, B. J., & Hogan, C. J. 1986, ApJ, 306, 428CrossRefGoogle Scholar
Bromm, V. & Larson, R. 2004, ARA&A, 42, 79Google Scholar
Cooray, A., Bock, J. J., Keatin, B., et al. 2004, ApJ, 606, 611CrossRefGoogle Scholar
Fazio, G., Ashby, M. L. N., Barnby, P., et al. 2004, ApJS, 154, 39CrossRefGoogle Scholar
Fixsen, D., Moseley, S. H. & Arendt, R. G. 2000, ApJS, 128, 651CrossRefGoogle Scholar
Giavilisco, M., Dickinson, M., Ferguson, H. C., et al. 2004, ApJ, 600, L93CrossRefGoogle Scholar
Hogbom, J. 1974, A&AS, 15, 417Google Scholar
Kashlinsky, A. 2005, Phys. Rep., 409, 361CrossRefGoogle Scholar
Kashlinsky, A. 2005, ApJ, 633 L5CrossRefGoogle Scholar
Kashlinsky, A., Odenwald, S., Mather, J., et al. 2002, ApJ, 579, L53CrossRefGoogle Scholar
Kashlinsky, A., Arendt, R. G., Gardner, J. P., et al. 2004, ApJ, 608, 1CrossRefGoogle Scholar
Kashlinsky, A., Arendt, R. G., Mather, J., & Moseley, S. H. 2005, Nature, 438, 45 (KAMM1)CrossRefGoogle Scholar
Kashlinsky, A., Arendt, R. G., Mather, J., & Moseley, S. H. 2007a, ApJ, 654, L5 (KAMM2)CrossRefGoogle Scholar
Kashlinsky, A., Arendt, R. G., Mather, J., & Moseley, S. H. 2007b, ApJ, 654, L1 (KAMM3)CrossRefGoogle Scholar
Kashlinsky, A., Arendt, R. G., Mather, J., & Moseley, S. H. 2007c, ApJ, 666, L1 (KAMM4)CrossRefGoogle Scholar
Santos, M., Bromm, V., & Kamionkowski, M. 2002, MNRAS, 336, 1082CrossRefGoogle Scholar
Thompson, R., Eisenstein, D., Fan, X., et al. 2007a ApJ, 659, 667Google Scholar
Thompson, R., Eisenstein, D., Fan, X., et al. 2007b ApJ, 666, 658CrossRefGoogle Scholar