Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T10:35:20.773Z Has data issue: false hasContentIssue false

Hydrodynamical Adaptive Mesh Refinement Simulations of Disk Galaxies

Published online by Cambridge University Press:  01 June 2008

Brad K. Gibson
Affiliation:
Centre for Astrophysics, University of Central Lancashire, Preston, PR1 2HE, UK email: [email protected]
Stéphanie Courty
Affiliation:
Centre for Astrophysics, University of Central Lancashire, Preston, PR1 2HE, UK email: [email protected]
Patricia Sánchez-Blázquez
Affiliation:
Centre for Astrophysics, University of Central Lancashire, Preston, PR1 2HE, UK email: [email protected]
Romain Teyssier
Affiliation:
Service d'Astrophysique, CEA Saclay, Batiment 709, 91191 Gif sur Yvette, France
Elisa L. House
Affiliation:
Centre for Astrophysics, University of Central Lancashire, Preston, PR1 2HE, UK email: [email protected]
Chris B. Brook
Affiliation:
Centre for Astrophysics, University of Central Lancashire, Preston, PR1 2HE, UK email: [email protected]
Daisuke Kawata
Affiliation:
Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA, 91101, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To date, fully cosmological hydrodynamic disk simulations to redshift zero have only been undertaken with particle-based codes, such as GADGET, Gasoline, or GCD+. In light of the (supposed) limitations of traditional implementations of smoothed particle hydrodynamics (SPH), or at the very least, their respective idiosyncrasies, it is important to explore complementary approaches to the SPH paradigm to galaxy formation. We present the first high-resolution cosmological disk simulations to redshift zero using an adaptive mesh refinement (AMR)-based hydrodynamical code, in this case, RAMSES. We analyse the temporal and spatial evolution of the simulated stellar disks' vertical heating, velocity ellipsoids, stellar populations, vertical and radial abundance gradients (gas and stars), assembly/infall histories, warps/lopsideness, disk edges/truncations (gas and stars), ISM physics implementations, and compare and contrast these properties with our sample of cosmological SPH disks, generated with GCD+. These preliminary results are the first in our long-term Galactic Archaeology Simulation program.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, ApJ, 591, 499CrossRefGoogle Scholar
Agertz, O., Moore, B., & Stadel, J., et al. 2007, MNRAS, 380, 963CrossRefGoogle Scholar
Bailin, J., Kawata, D., & Gibson, B. K., et al. 2005, ApJ, 627, L17CrossRefGoogle Scholar
Bakos, J., Trujillo, I., & Pohlen, M. 2008, ApJ, 683, L103CrossRefGoogle Scholar
Bland-Hawthorn, J., Freeman, K. C., & Quinn, P. J. 1997, ApJ, 490, 143CrossRefGoogle Scholar
Brook, C. B., Kawata, D., Gibson, B. K., & Freeman, K. C. 2004, ApJ, 612, 894CrossRefGoogle Scholar
Cescutti, G., Matteucci, F., Francois, P., & Chiappini, C. 2007, A&A, 462, 943Google Scholar
Ceverino, D. & Klypin, A. 2008, ApJ, submittedGoogle Scholar
Fenner, Y., Murphy, M. T., & Gibson, B. K. 2005, MNRAS, 358, 468CrossRefGoogle Scholar
Governato, F., Mayer, L., & Wadsley, J. et al. 2004, ApJ, 607, 688CrossRefGoogle Scholar
Governato, F., Willman, B., & Mayer, L., et al. 2007, MNRAS, 374, 1479CrossRefGoogle Scholar
Herrmann, K. A. & Ciardullo, R. 2008, in: Funes, J. G. & Corsini, E. M. (eds.), Formation and Evolution of Galaxy Disks (ASP Conf Ser), in pressGoogle Scholar
Holmberg, J., Nordström, B., & Anderson, J. 2007, A&A, 475, 519Google Scholar
Kawata, D. & Gibson, B. K. 2003, MNRAS, 346, 135CrossRefGoogle Scholar
Mapelli, M., Moore, B., & Bland-Hawthorn, J. 2008, in: Anderson, J., Bland-Hawthorn, J. & Nordström, B. (eds.), The Galaxy Disk in Cosmological Context (CUP), in pressGoogle Scholar
Okamoto, T., Eke, V. R., Frenk, C. S., & Jenkins, A. 2005, MNRAS, 363, 1299CrossRefGoogle Scholar
O'Shea, B. W., Nagamine, K., Springel, V., Hernquist, L., & Norman, M. L. 2005, ApJS, 160, 1CrossRefGoogle Scholar
Portas, A., Brinks, E., & Usero, A., et al. 2008, in: Anderson, J., Bland-Hawthorn, J. & Nordström, B. (eds.), The Galaxy Disk in Cosmological Context (Cambridge University Press), in pressGoogle Scholar
Quillen, A. C. & Garnett, D. R. 2001, in: Funes, J. G. & Corsini, E. M. (eds.), Galaxy Diks and Disk Galaxies (ASP Conf Ser), p. 87Google Scholar
Robertson, B., Yoshida, N., Springel, V., & Hernquist, L. 2004, ApJ, 606, 32CrossRefGoogle Scholar
Roskar, R., Debattista, V. P., & Stinson, G. S., et al. 2008, ApJ, 675, L65CrossRefGoogle Scholar
Santiago, B. X. & Vale, T. B. 2008, A&A, 485, 21Google Scholar
Sommer-Larsen, J., Götz, M., & Portinari, L. 2003, ApJ, 596, 47CrossRefGoogle Scholar
Teyssier, R. 2002, A&A, 385, 337Google Scholar
Yoachim, P. & Dalcanton, J. 2006, AJ, 131, 226CrossRefGoogle Scholar
Yoachim, P. & Dalcanton, J. 2008, ApJ, 682, 1004CrossRefGoogle Scholar