Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:50:51.321Z Has data issue: false hasContentIssue false

HST Imaging of New Edge-on Circumstellar Disks in Nearby Star-forming Regions

Published online by Cambridge University Press:  06 January 2014

K.R. Stapelfeldt
Affiliation:
NASA GSFC
G. Duchêne
Affiliation:
UC Berkeley IPAG/Grenoble
M. Perrin
Affiliation:
STScI
S. Wolff
Affiliation:
JHU
J.E. Krist
Affiliation:
JPL/Caltech
D.L. Padgett
Affiliation:
NASA GSFC
F. Ménard
Affiliation:
IPAG/Grenoble UMI 3386 CNRS / U. deChile
C. Pinte
Affiliation:
IPAG/Grenoble UMI 3386 CNRS / U. deChile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Edge-on, optically thick circumstellar disks have been previously imaged at subarcsecond resolution around about a dozen nearby young stellar objects. In these systems the central star is occulted from direct view, bright star image artifacts are absent, and the disk reflected light is clearly seen. Comparison of Hubble Space Telescope (HST) edge-on disk images with scattered light models has allowed key disk structural parameters and dust grain properties to be determined. Edge-on disks have been systematically undercounted to date: while 10% of young stars should statistically be occulted by their disk, the observed frequency is much less. Thus there is a significant potential for discovering and imaging new examples. Spitzer Space Telescope legacy science programs have provided the first good spectral energy distribution (SED) measurements for the previously known edge-on disks. These can be used as templates to identify new candidates in far-infrared survey datasets.

We report on the results of our HST program to image twenty-one edge-on disk candidates mostly selected from their SEDs. Eleven are well-resolved with radii ranging from 30-400 AU, nine for the first time and six showing highly collimated jets. Outstanding individual sources include a large and symmetric new template object, a highly flattened disk not accreting onto its central star, and an asymmetric disk with a misaligned jet which likely traces tidal perturbations in a binary system. Follow-up work to obtain ancillary data and perform scattered light modeling of the most symmetric disks is now being pursued. The results of this program will guide a new round of searches for these rare but important snapshots of protoplanetary disk evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Allen, L. & Spitzer Gould Belt Legacy Team 2007, BAAS, 39, 881Google Scholar
Burrows, C. J., Stapelfeldt, K. R., Watson, A. M., et al. 1996, ApJ, 473, 437CrossRefGoogle Scholar
Comerón, F. & Reipurth, B. 2006, A&A, 458, L21Google Scholar
Cotera, A. S., Whitney, B. A., Young, E., et al. 2001, ApJ, 556, 958Google Scholar
Duchêne, G., McCabe, C., Pinte, C., et al. 2010, ApJ, 712, 112CrossRefGoogle Scholar
Evans, N. J., et al. 2009, ApJS, 181, 321Google Scholar
Krist, J. E., Stapelfeldt, K. R., Ménard, F., et al. 2000, ApJ, 538, 793CrossRefGoogle Scholar
Mayama, S., Hashimoto, J., Muto, T., et al. 2012, ApJ, 760, L26Google Scholar
McCabe, C., Duchêne, G., & Ghez, A. M. 2003, ApJ, 588, L113Google Scholar
McCabe, C., Duchêne, G., Pinte, C., et al. 2011, ApJ, 727, 90Google Scholar
Neuhäuser, R., Krämer, S., Mugrauer, M., et al. 2009, A&A, 496, 777Google Scholar
Padgett, D. L., Brandner, W., Stapelfeldt, K. R., et al. 1999, AJ, 117, 1490Google Scholar
Perrin, M. D., Duchêne, G., Kalas, P., & Graham, J. R. 2006, ApJ, 645, 1272CrossRefGoogle Scholar
Pinte, C., Padgett, D. L., Ménard, F., et al. 2008, A&A, 489, 633Google Scholar
Rebull, L. M., Padgett, D. L., McCabe, C.-E., et al. 2010, ApJS, 186, 259Google Scholar
Ricci, L., Robberto, M., & Soderblom, D. R. 2008, AJ, 136, 2136Google Scholar
Sauter, J., Wolf, S., Launhardt, R., et al. 2009, A&A, 505, 1167Google Scholar
Stapelfeldt, K. R., Krist, J. E., Menard, F., et al. 1998, ApJ, 502, L65Google Scholar
Stapelfeldt, K. R., Ménard, F., Watson, A. M., et al. 2003, ApJ, 589, 410CrossRefGoogle Scholar
Watson, A. M. & Stapelfeldt, K. R. 2004, ApJ, 602, 860CrossRefGoogle Scholar
Watson, A. M., Stapelfeldt, K. R., Wood, K., & Ménard, F. 2007, Protostars & Planets V, 523Google Scholar
Wolf, S., Padgett, D. L., & Stapelfeldt, K. R. 2003, ApJ, 588, 373Google Scholar
Wood, K., Kenyon, S. J., Whitney, B., & Turnbull, M. 1998, ApJ, 497, 404CrossRefGoogle Scholar