Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T01:25:32.094Z Has data issue: false hasContentIssue false

History of the solar environment

Published online by Cambridge University Press:  01 September 2008

Kurt Marti
Affiliation:
University of California at San Diego, Dept. of Chemistry (0317), 9500 Gilman Dr., La Jolla, CA 92093-0317
Bernard Lavielle
Affiliation:
University of Bordeaux, CNRS, Laboratoire de Chimie Nucléaire Analytique, et Bio-environnementale (CNAB), Domaine Le Haut Vigneau - BP 120, 33175 Gradignan cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic cosmic rays (GCR) provide information on the solar neighborhood during the sun's motion in the galaxy. There is now considerable evidence for GCR acceleration by shock waves of supernova in active star-forming regions (OB associations) in the galactic spiral arms. During times of passage into star-forming regions increases in the GCR-flux are expected. Recent data from the Spitzer Space Telescope (SST) are shedding light on the structure of the Milky Way and of its star-forming-regions in spiral arms. Records of flux variations may be found in solar system detectors, and iron meteorites with GCR-exposure times of several hundred million years have long been considered to be potential detectors (Voshage, 1962). Variable concentration ratios of GCR-produced stable and radioactive nuclides, with varying half-lives and therefore integration times, were reported by Lavielle et al. (1999), indicating a recent 38% GCR-flux increase. Potential flux recorders consisting of different pairs of nuclides can measure average fluxes over different time scales (Lavielle et al., 2007; Mathew and Marti, 2008). Specific characteristics of two pairs of recorders (81Kr-Kr and 129I-129Xe) are the properties of self-correction for GCR-shielding (flux variability within meteorites of varying sizes). The 81Kr-Kr method (Marti, 1967) is based on Kr isotope ratios, while stable 129Xe is the decay product of the radionuclide 129I, which is produced by secondary neutron reactions on Te in troilites of iron meteorites. The two chronometers provide records of the average GCR flux over 1 and 100 million year time scales, respectively.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Axford, W. I. 1981, Proc. 17th Intl. Cosmic-Ray Conference (Paris), 12, 155Google Scholar
Begelman, M. C. & Rees, M. J. 1976, Nature, 261, 298CrossRefGoogle Scholar
Calogovic, J., Arnold, F., Desorgher, L., Flueckiger, E. O., & Beer, J. 2008, Forbush Decreases: No change of global cloud cover. Universal Heliophysical Processes, IAU Symposium 257 Abstracts, 30Google Scholar
De Zeeuw, P. T., Hoogerwerf, R., De Bruijne, J. H. J., Brown, A. G. A., & Blaauw, A. 1999, A Hipparcos Census of the Nearby OB Associations. Astrophys. J., 117, 354399Google Scholar
Dragicevich, P. M., Blaie, D. G., & Burman, R. R. 1999, MNRAS, 302, 693.CrossRefGoogle Scholar
Higdon, J. C. & Lingenfelter, R. E. 2003, The myriad-source model of cosmic rays: I. Steady state age and path length distributions Astrophys. J., 582, 330341CrossRefGoogle Scholar
Korschinek, G., Morinaga, H., Nolte, E., Preisenberger, E., Ratzinger, U., Urban, A., Dragovitsch, P., & Vogt, S. 1987, Accelerator mass spectrometry with completely stripped 41-Ca and 53-Mn ions at the Munich tandem laboratory. Nucl. Instrum. Methods Phys. Res., B29, 67CrossRefGoogle Scholar
Knie, K., Korschinek, G., Faestermann, T., Dorfi, E. A., Rugel, G., & Wallner, A. 2004, 60Fe Anomaly in a Deep-Sea Manganese Crust and Implications for a Nearby Supernova Source. Phys. Rev. Letters, 93 (17), 171103–1CrossRefGoogle Scholar
Lavielle, B., Marti, K., Jeannot, J.-P., Nishiizumi, K., & Caffee, M. W. 1999, The 36Cl-36Ar-40K-41K records and cosmic ray production rates in iron meteorites Earth Planet. Sci. Lett., 170, 93104CrossRefGoogle Scholar
Lavielle, B., Gilabert, E., & Thomas, B. 2007, A new facility for the determination of cosmic ray exposure ages in small extraterrestrial samples using 81Kr-Kr dating method. 70th Met. Soc. Mtg., A92 (abstract)Google Scholar
Marti, K. 1967, Mass-spectrometric detection of cosmic-ray-produced 81Kr in meteorites and the possibility of Kr-Kr dating. Phys. Rev. Lett. 18 (7), 264266CrossRefGoogle Scholar
Marti, K. 1986, Live 129I-129Xe dating. In Workshop on Cosmogenic Nuclides (ed. Englert, P. A. J. and Reedy, R. C.), pp. 4951. LPI Tech. Rpt. 86-06. Lunar and Planetary InstituteGoogle Scholar
Mathew, K. J. & Marti, K. 2008, Galactic cosmic-ray-produced 129Xe and 131Xe excesses in troilites of the Cape York iron meteorite. Met. & Planet. Sci., accepted for publication.CrossRefGoogle Scholar
Murty, S. V. S. & Marti, K. 1987, Nucleogenic noble gas components in the Cape York iron meteorite. Geochim. Cosmochim. Acta, 51 (1), 163172CrossRefGoogle Scholar
Shaviv, N. J. 2002, Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection. Phys. Rev. Lett/, 89 (5)Google Scholar
Shaviv, N. J. 2003, New Astronomy, 8, 2003, 3977CrossRefGoogle Scholar
Voshage, H. 1962, Eisenmeteorite als Raumsonden fur die Untersuchung des Intensitatsverlaufes der komischen Strahlung während der lezten Milliarden Jahre. Z. Naturforsch., 17a, 422432CrossRefGoogle Scholar