Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T08:31:53.405Z Has data issue: false hasContentIssue false

Helioseismic inferences on subsurface solar convection

Published online by Cambridge University Press:  01 August 2006

Alexander G. Kosovichev*
Affiliation:
Stanford University, Stanford, CA 94305, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Helioseismology has provided robust estimates of global properties of the solar convection zone, its depth, stratification, and revealed rotational shear layers at the boundaries. New methods of local helioseismology provide 3D maps of subsurface convective flows. In the quiet Sun regions, these maps reveal that supergranular-scale convection extends to the depth of 12–15 Mm. Analysis of evolution of the supergranular convection pattern shows evidence for a wave-like behavior which might be related to the interaction between convection and the subsurface rotational sheer layer. Helioseismology also reveals large-scale circulation flows around magnetic regions. These flows affect the evolution of the mean meridional flow during the solar cycle and, probably, the magnetic flux transport from mid-latitudes to the polar regions, a process important for solar dynamo theories. Helioseismic measurements on a smaller scale, below sunspots, give insight on how convection interacts with strong magnetic fields.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Adam, J.A. 1977, apss 50, 493Google Scholar
Basu, S. 1997, mnras 288, 572Google Scholar
Benevolenskaya, E.E., et al. 1999, apjl 517, L163CrossRefGoogle Scholar
Christensen-Dalsgaard, J., Gough, D.O. & Thompson, M.J. 1991, apj 378, 413Google Scholar
Christensen-Dalsgaard, J. et al. , 1996, Science 272, 1286CrossRefGoogle Scholar
Duvall, T.L. Jr., Jefferies, S.M., Harvey, J.W. & Pomerantz, M.A. 1993, nat 362, 430Google Scholar
Duvall, T.L. Jr., et al. 1997, solphys 170,63Google Scholar
Elliott, J.R. & Gough, D. O. 1999, apj 516, 475CrossRefGoogle Scholar
Gizon, L., Duvall, T.L. Jr., & Larsen, R.M. 2001, IAU Symposium 203, 189CrossRefGoogle Scholar
Gizon, L., Duvall, T.L. & Schou, J. 2003, nat 421, 43CrossRefGoogle Scholar
Gough, D.O. & Toomre, J. 1983, solphys 82, 401Google Scholar
Gough, D.O. & Kosovichev, A.G. 1995, in: Helioseismology ESA SP, p.47Google Scholar
Green, C.A. & Kosovichev, A.G. 2006, apjl 641, L77Google Scholar
Haber, D.A., et al. 2002, apj 570, 855Google Scholar
Haber, D.A., Hindman, B.W., Toomre, J. & Thompson, M.J. 2004, solphys 220, 371Google Scholar
Hurlburt, N.E. & Rucklidge, A.M. 2000, mnras 314, 793Google Scholar
Kosovichev, A.G. & Fedorova, A.V. 1991, Sov. Astron. 35, 507Google Scholar
Kosovichev, A.G. & Duvall, T.L. Jr., 1997, ASSL Vol. 225: SCORe'96 : Solar Convection and Oscillations and their Relationship, 241CrossRefGoogle Scholar
Kosovichev, A.G. 1996a, apjl 469, L61CrossRefGoogle Scholar
Kosovichev, A.G. 1996, apjl 469, L61CrossRefGoogle Scholar
Kosovichev, A.G. 1999, J. Comp. Appl. Math 109, 1Google Scholar
Kosovichev, A.G., Duvall, T.L., Jr. & Scherrer, P.H. 2000, solphys 192, 159Google Scholar
Schou, J., Kosovichev, A.G., Goode, P.R. & Dziembowski, W.A. 1997, apjl 489, L197Google Scholar
Schou, J., et al. 1998, apj 505, 390Google Scholar
Zhao, J., Kosovichev, A.G. & Duvall, T.L. Jr., 2001, apj 557, 384CrossRefGoogle Scholar
Zhao, J. & Kosovichev, A.G. 2004, apj 603, 776Google Scholar