No CrossRef data available.
Article contents
Globular clusters and the evolution of their multiple stellar populations
Published online by Cambridge University Press: 31 March 2017
Abstract
Our knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).
Keywords
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 12 , Symposium S316: Formation, evolution, and survival of massive star clusters , August 2015 , pp. 328 - 333
- Copyright
- Copyright © International Astronomical Union 2017