Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:11:57.035Z Has data issue: false hasContentIssue false

Galaxy formation and evolution with the Dark Energy Survey

Published online by Cambridge University Press:  17 July 2013

Diego Capozzi
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth Dennis Sciama Building, Burnaby Road Portsmouth, PO1 3FX, UK email: [email protected] email: [email protected] email: [email protected]
Daniel Thomas
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth Dennis Sciama Building, Burnaby Road Portsmouth, PO1 3FX, UK email: [email protected] email: [email protected] email: [email protected]
Claudia Maraston
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth Dennis Sciama Building, Burnaby Road Portsmouth, PO1 3FX, UK email: [email protected] email: [email protected] email: [email protected]
Luke J. M. Davies
Affiliation:
Institute of Cosmology and Gravitation, University of Portsmouth Dennis Sciama Building, Burnaby Road Portsmouth, PO1 3FX, UK email: [email protected] email: [email protected] email: [email protected] Department of Physics, University of Bristol H. H. Wills Physics Laboratory, Tyndall Avenue BS8 1LT, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Dark Energy Survey (DES) will be the new state-of the-art in large-scale galaxy imaging surveys. With 5,000 deg2, it will cover an area of the sky similar to SDSS-II, but will go over two magnitudes deeper, reaching 24th magnitude in all four optical bands (griz). DES will further provide observations in the redder Y-band and will be complemented with VISTA observations in the near-infrared bands JHK. Hence DES will furnish an unprecedented combination of sky and wavelength coverage and depth, unreached by any of the existing galaxy surveys. The very nature of the DES data set – large volume at intermediate photometric depth – allows us to probe galaxy formation and evolution within a cosmic-time range of ~ 10 Gyr and in different environments. In fact there will be many galaxy clusters available for galaxy evolution studies, given that one of the main aims of DES is to use their abundance to constrain the equation of state of dark energy. The X-ray follow up of these clusters, coupled with the use of gravitational lensing, will provide very precise measures of their masses, enabling us to study in detail the influence of the environment on galaxy formation and evolution processes. DES will leverage the study of these processes by allowing us to perform a detailed investigation of the galaxy luminosity and stellar mass functions and of the relationship between dark and baryonic matter as described by the Halo Occupation Distribution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Berlind, A. A. & Weinberg, D. H. 2002, ApJ, 575, 587Google Scholar
Capozzi, D., Collins, C. A., & Stott, J. P. 2010, MNRAS, 403, 1274Google Scholar
Capozzi, D., Collins, C. A., Stott, J. P., & Hilton, M. 2012, MNRAS, 419, 2821CrossRefGoogle Scholar
Cimatti, A., Daddi, E., & Renzini, A. 2006, A&A, 453, L29Google Scholar
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839Google Scholar
Davies, L. J. M., Maraston, C., Thomas, D., & Capozzi, D., the DES collaboration 2012, submittedGoogle Scholar
De Lucia, G., Springel, V., White, S. D. M., Croton, D., & Kauffmann, G. 2006, MNRAS, 366, 499CrossRefGoogle Scholar
De Lucia, G. & Blaizot, J. 2007, MNRAS, 375, 2Google Scholar
Gao, L., et al. 2008, MNRAS, 387, 536Google Scholar
Klypin, A. A., Trujillo-Gomez, S., & Primack, J. 2011, ApJ, 740, 102CrossRefGoogle Scholar
Kravtsov, A. V., et al. 2004, ApJ, 609, 35CrossRefGoogle Scholar
Lin, Y., Mohr, J. J., & Stanford, S. A. 2004, ApJ, 610, 745Google Scholar
Maraston, C., et al. 2012, MNRAS, submitted (arXiv:1207.6114)Google Scholar
Muzzin, A., Yee, H. K. C., Hall, P. B., & Lin, H. 2007, ApJ, 663, 150CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493Google Scholar
Neto, A. F., et al. 2007, MNRAS, 381, 1450Google Scholar
Peacock, J. A. & Smith, R. E. 2000, MNRAS, 318, 1144Google Scholar
Pozzetti, L., et al. 2010, A&A, 523, A13Google Scholar
Springel, V., et al. 2005, Nature, 435, 629Google Scholar
Springel, V., Frenk, C. S., & White, S. D. M. 2006, Nature, 440, 1137Google Scholar
Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C. 2005, ApJ, 621, 673Google Scholar