Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T16:04:37.408Z Has data issue: false hasContentIssue false

Gaia and the asteroids: Local test of GR

Published online by Cambridge University Press:  06 January 2010

Daniel Hestroffer
Affiliation:
IMCCE, Observatoire de Paris, CNRS, 77 Av. Denfert-Rochereau F-75014 Paris, France email: [email protected], [email protected]
S. Mouret
Affiliation:
IMCCE, Observatoire de Paris, CNRS, 77 Av. Denfert-Rochereau F-75014 Paris, France email: [email protected], [email protected] Lohrman Observatory, Dresden, Germany; email: [email protected]
F. Mignard
Affiliation:
Cassiopée, Observatoire de la Cote d'Azur, CNRS, Mont-Gros F-06300 Nice, France email: [email protected], [email protected]
P. Tanga
Affiliation:
Cassiopée, Observatoire de la Cote d'Azur, CNRS, Mont-Gros F-06300 Nice, France email: [email protected], [email protected]
J. Berthier
Affiliation:
IMCCE, Observatoire de Paris, CNRS, 77 Av. Denfert-Rochereau F-75014 Paris, France email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present in the following some capabilities of the Gaia mission for performing local test of General Relativity (GR) based on the astrometry of asteroids. This ESA cornerstone mission, to be launched in Spring 2012, will observe—in addition to the stars and QSOs—a large number of small solar system bodies with unprecedented photometric and, mostly, astrometric precisions. Indeed, it is expected that about 250,000 asteroids will be observed with a nominal precision ranging from a few milli-arcsecond (mas), to sub-mas precision, depending on the target's brightness. While the majority of this sample is constituted of known main-belt asteroids orbiting between Mars and Jupiter, a substantial fraction will be made of near-Earth objects, and possibly some newly discovered inner-Earth or co-orbital objects.

Here we show the results obtained from a simulation of Gaia observations for local tests of GR in the gravitational field of the Sun. The simulation takes into account the time sequences and geometry of the observations that are particular to Gaia observations of solar system objects, as well as the instrument sensitivity and photon noise. We show the results from a variance analysis for the nominal precision of the joint determination of the solar quadrupole J2 and the PPN parameter β. Additionally we include the link of the dynamical reference frame to the conventional kinematically non-rotating reference frame (as obtained in the visible wavelength by Gaia observations of QSOs). The study is completed by the determination of a possible variation of the gravitational constant /G, and deviation from Newtonian 1/r2 gravitational law. Comparisons to the results obtained from other techniques are also given.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Bottke, W. F., Morbidelli, A., Jedicke, R., et al. 2002, Icarus, 156, 399CrossRefGoogle Scholar
Deller, A. T., Verbiest, J. P. W., Tingay, S. J., & Bailes, M. 2008, ApJL, 685, L67CrossRefGoogle Scholar
Dicke, R. H. 1965, AJ, 70, 395CrossRefGoogle Scholar
Fienga, A., Manche, H., Laskar, J., & Gastineau, M. 2008, A&A, 477, 315Google Scholar
Folkner, W. M. 2009, this proceedings, 155. BAAS, 41, #06.01Google Scholar
Gilvarry, J. J. 1953, Physical Review, 89, 1046Google Scholar
Hestroffer, D., Morando, B., Hog, E., et al. 1998, A&A, 334, 325Google Scholar
Hobbs, D., Holl, B., Lindegren, L., et al. 2009, this proceedings, 315. BAAS, 41, #16.03Google Scholar
Lindegren, L. 2009, this proceedings. BAAS, 41, #16.01Google Scholar
Margot, J.-L. & Giorgini, J. D. 2009, this proceedings, 183. BAAS, 41, #07.01Google Scholar
Mignard, F. 2009, this proceedings, 306. BAAS, 41, #16.02Google Scholar
Mignard, F., Cellino, A., Muinonen, K., et al. 2007, Earth Moon and Planets, 101, 97Google Scholar
Milani, A. 2009, this proceedings, 356. BAAS, 41, #18.01Google Scholar
Mouret, S., Hestroffer, D., & Mignard, F. 2007, A&A, 472, 1017CrossRefGoogle Scholar
Orellana, R. B. & Vucetich, H. 1988, A&A, 200, 248Google Scholar
Ostro, S. J. and Giorgini, J. D. and Benner, L. A. M. 2007, IAU Symposium #236, 143Google Scholar
Pitjeva, E. V. 2005, Astronomy Letters, 31, 340–349Google Scholar
Pitjeva, E. V. 2009, this proceedings, 170. BAAS, 41, #06.03Google Scholar
Shapiro, I. I., Smith, W. B., Ash, M. E., & Herrick, S. 1971, AJ, 76, 588Google Scholar
Sitarski, G. 1992, AJ, 104, 1226CrossRefGoogle Scholar
Söderhjelm, S. & Lindegren, L. 1982, A&A, 110, 156Google Scholar
Wallin, J. F., Dixon, D. S., & Page, G. L. 2007, ApJ, 666, 1296CrossRefGoogle Scholar
Will, C. M. 2006, Living Reviews in Relativity, 9Google Scholar
Williams, J. G. & Folkner, W. M. 2009, this proceedings. BAAS, 41, #08.01Google Scholar
Zhang, J.-X. 1994, Chinese Astron. and Astroph., 18, 108–115Google Scholar
Zharov, V., Sazhin, M., Sementsov, V., Kuimov, K., & Sazhina, O. 2009, this proceedings, 50. BAAS, 41, #02.06CrossRefGoogle Scholar