Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T10:03:41.945Z Has data issue: false hasContentIssue false

Foreground mitigation strategy for measuring the 21 cm-LAE cross-correlation

Published online by Cambridge University Press:  08 May 2018

Shintaro Yoshiura
Affiliation:
Department of Physics, Kumamoto University, Kumamoto, Japan email: [email protected]
Jack L. B. Line
Affiliation:
The University of Melbourne, Melbourne, Australia ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
Kenji Kubota
Affiliation:
Department of Physics, Kumamoto University, Kumamoto, Japan email: [email protected]
Kenji Hasegawa
Affiliation:
Department of Physics, Nagoya University, Aichi, Japan
Keitaro Takahashi
Affiliation:
Department of Physics, Kumamoto University, Kumamoto, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cross power spectrum of the 21 cm signal and Lyman-α emitters (LAEs) is a probe of the Epoch of Reionization. Astrophysical foregrounds do not correlate with the LAE distribution, though the foregrounds contribute to the error. To study the impact of foregrounds on the measurement, we assume realistic observation by the Murchison Widefield Array using a catalogue of radio galaxies, a LAE survey by the Subaru Hyper Supreme-Cam and the redshift of LAEs is determined by the Prime Focus Spectrograph. The HI distribution is estimated from a radiative transfer simulation with models based on results of radiation hydrodynamics simulation. Using these models, we found that the error of cross power spectrum is dominated by foreground terms. Furthermore, we estimate the effects of foreground removal, and find 99% of the foreground removal is required to detect the 21 cm-LAE signal at k ∼ 0.4 h Mpc−1.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bowman, J. D., Cairns, I., Kaplan, D. L., et al. 2013, PASA, 30, e031CrossRefGoogle Scholar
Furlanetto, S. R. & Lidz, A., 2007, ApJ, 660, 1030Google Scholar
Hurley-Walker, N., Callingham, J. R., Hancock, P. J., et al. 2017, MNRAS, 464, 1146CrossRefGoogle Scholar
Ishiyama, T., Fukushige, T., & Makino, J., 2009, PASJ, 61, 1319Google Scholar
Jelić, V., Zaroubi, S., Labropoulos, P., et al. 2008, MNRAS, 389, 1319CrossRefGoogle Scholar
Konno, A., Ouchi, M., Shibuya, T., et al. 2017, arXiv:1705.01222Google Scholar
Kubota, K., Yoshiura, S., Takahashi, K., et al. 2017, arXiv:1708.06291Google Scholar
Lidz, A., Zahn, O., Furlanetto, S. R., et al. 2009, APJ, 690, 252Google Scholar
Mellema, G., Koopmans, L. V. E., Abdalla, F. A., et al. 2013, Experimental Astronomy, 36, 235Google Scholar
Park, J., Kim, H.-S., Wyithe, J. S. B., & Lacey, C. G., 2014, MNRAS, 438, 2474CrossRefGoogle Scholar
Thyagarajan, N., Udaya Shankar, N., Subrahmanyan, R., et al. 2013, APJ, 776, 6CrossRefGoogle Scholar
Tingay, S. J., Goeke, R., Bowman, J. D., et al. 2013, PASA, 30, e007Google Scholar
Yajima, H., Sugimura, K. & Hasegawa, K. 2017, arXiv:1701.05571Google Scholar
Yoshiura, S., Line, J. L. B., Kubota, K., Hasegawa, K. & Takahashi, K. 2018, accepted to MNRASGoogle Scholar