Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T01:08:33.839Z Has data issue: false hasContentIssue false

Filamentary pattern in the cosmic web: galaxy filaments as pearl necklaces

Published online by Cambridge University Press:  12 October 2016

Elmo Tempel
Affiliation:
Tartu Observatory, Observatooriumi 1, 61602 Tõravere, Estonia email: [email protected] NICPB, Rävala pst 10, 10143 Tallinn, Estonia
Maarja Bussov
Affiliation:
Tartu Observatory, Observatooriumi 1, 61602 Tõravere, Estonia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galaxies form chains (filaments) that connect groups and clusters of galaxies. The filamentary network includes nearly half of the galaxies and is visually the most striking feature in cosmological maps. We study the distribution of galaxies along such a filamentary network, trying to find specific patterns. Our galaxy filaments are defined using the Bisous process. We use the two-point correlation function and the Rayleigh $Z$-squared statistic to study how the galaxies are distributed along the filaments. We show that galaxies and galaxy groups are not uniformly distributed along filaments, but tend to form a regular pattern. The characteristic length of the pattern is 7~$h^{-1}$Mpc. A slightly smaller characteristic length 4~$h^{-1}$Mpc can also be found, using the $Z$-squared statistic. One can say that galaxy filaments are like pearl necklaces, where the pearls are galaxy groups distributed more or less regularly along the filaments. We propose that this well defined characteristic scale could be used as a cosmological test.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Cautun, M., van de Weygaert, R., Jones, B. J. T., & Frenk, C. S. 2014, MNRAS, 441, 2923 CrossRefGoogle Scholar
Einasto, J., Jõeveer, M., & Saar, E. 1980, Nature, 283, 47 Google Scholar
Jasche, J., Kitaura, F. S., Li, C., & Enßlin, T. A. 2010, MNRAS, 409, 355 CrossRefGoogle Scholar
Jõeveer, M., Einasto, J., & Tago, E. 1978, MNRAS, 185, 357 CrossRefGoogle Scholar
Landy, S. D. & Szalay, A. S. 1993, ApJ, 412, 64 Google Scholar
Liivamägi, L. J., Tempel, E., & Saar, E. 2012, A&A, 539, A80 Google Scholar
Stoica, R. S., Martínez, V. J., & Saar, E. 2007, Journal of the Royal Statistical Society Series C, 56, 459 Google Scholar
Stoica, R. S., Martínez, V. J., & Saar, E. 2010, A&A, 510, A38 Google Scholar
Tempel, E. & Libeskind, N. I. 2013, ApJL, 775, L42 Google Scholar
Tempel, E., Libeskind, N. I., Hoffman, Y., Liivamägi, L. J., & Tamm, A. 2014a, MNRAS, 437, L11 CrossRefGoogle Scholar
Tempel, E., Tamm, A., Gramann, M., Tuvikene, T., Liivamägi, L. J., Suhhonenko, I., Kipper, R., Einasto, M., & Saar, E. 2014b, A&A, 566, A1 Google Scholar
Tempel, E., Stoica, R. S., Martínez, V. J., Liivamägi, L. J., Castellan, G., & Saar, E. 2014c, MNRAS, 438, 3465 Google Scholar
Tempel, E., Kipper, R., Saar, E., Bussov, M., Hektor, A., & Pelt, J. 2014d, arXiv:1406.4357Google Scholar
Zhang, Y., Dietrich, J. P., McKay, T. A., Sheldon, E. S., & Nguyen, A. T. Q. 2013, ApJ, 773, 115 Google Scholar