Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T15:44:32.226Z Has data issue: false hasContentIssue false

The evolution of the mass-metallicity relation up to z≈0.9 from the VIMOS/VLT Deep Survey

Published online by Cambridge University Press:  01 August 2006

F. Lamareille
Affiliation:
Laboratoire d'Astrophysique de Toulouse/Tabres (UMR5572), CNRS, Université Paul Sabatier – Toulouse III, Observatoire Midi-Pyrénées, 14 av. E. Belin, 31400 Toulouse, France Max-Planck Institut für Astrophysik, 85741 Garching, Germany
T. Contini
Affiliation:
Laboratoire d'Astrophysique de Toulouse/Tabres (UMR5572), CNRS, Université Paul Sabatier – Toulouse III, Observatoire Midi-Pyrénées, 14 av. E. Belin, 31400 Toulouse, France
S. Charlot
Affiliation:
Max-Planck Institut für Astrophysik, 85741 Garching, Germany Institut d'Astrophysique de Paris (UMR7095), CNRS, 98bis Bd. Arago, 75014 Paris, France
J. Brinchmann
Affiliation:
Max-Planck Institut für Astrophysik, 85741 Garching, Germany CAUP, Rua das Estrelas S/N, 4150-752 Porto, Portugal.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the first results derived from the spectrophotometric properties of the Vimos VLT Deep Survey (VVDS) first epoch data. We have measured the spectral features (emission/absorption lines, 4000Å break) of a sample a ≈8000 galaxies taken from the VVDS deep 02h and CDFS fields using the platefit VVDS pipeline. We first selected a sub-sample of star-forming galaxies, which were distinguished from narrow-line AGNs by standard and blue diagnostic diagrams. Then the gas-phase oxygen abundances have been derived by fitting all available emission lines towards photo-ionization models. Finally the masses have been derived by fitting all photometric points together with significant spectral features to a library of stellar population models with complex star formation histories. The mass-metallicity relation that we find at low redshifts is in good agreement with previsous studies performed in the local Universe. We find moreover a significant evolution of the mass-metallicity relation with the redshift, the galaxies having on average less metals at a given mass when the redshift increases. We also find a flattening of the mass-metallicity relation up to z ~ 1.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Brinchmann, J., Charlot, S., White, S., 2004, MNRAS 351, 1151.CrossRefGoogle Scholar
Bruzual, G., & Charlot, S. 2003, MNRAS 344, 1000.CrossRefGoogle Scholar
Charlot, S., & Longhetti, M. 2001, MNRAS 323, 887.CrossRefGoogle Scholar
Erb, D., Shapley, A., Pettini, M., 2006, ApJ 644, 813.CrossRefGoogle Scholar
Hammer, F., Flores, H., Elbaz, D., 2005, A&A 430, 115.Google Scholar
Kewley, L., Heisler, C., Dopita, M., & Lumsden, S. 2001, ApJS 132, 37.CrossRefGoogle Scholar
Kobulnicky, H., Willmer, C., Phillips, A., 2003, ApJ 599, 1006.CrossRefGoogle Scholar
Lamareille, F., Mouhcine, M., Contini, T., Lewis, I., & Maddox, S. 2004, MNRAS 350, 396.CrossRefGoogle Scholar
Lamareille, F., Contini, T., Le Borgne, J.-F., 2006a, A&A 448, 893.Google Scholar
Lamareille, F., Contini, T., Brinchmann, J., 2006b, A&A 448, 907.Google Scholar
Lee, H., Skillman, E., Cannon, J., 2006, ApJ 647, 970.CrossRefGoogle Scholar
Le Fèvre, O., Vettolani, G., Garilli, B., 2005, A&A 439, 845.Google Scholar
Liang, Y., Hammer, F., Flores, H., 2004, A&A 423, 867.Google Scholar
Maier, C., Meisenheimer, K., & Hippelein, H. 2004, A&A 418, 475.Google Scholar
Savaglio, S., Glazebrook, K., Le Borgne, D., 2005, ApJ 635, 260.CrossRefGoogle Scholar
Tremonti, C., Heckman, T., Kauffmann, G., 2004, ApJ 613, 898.CrossRefGoogle Scholar