Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:15:57.377Z Has data issue: false hasContentIssue false

Dust evolution in protoplanetary disks

Published online by Cambridge University Press:  01 October 2007

Jean-François Gonzalez
Affiliation:
Université de Lyon, Lyon, F-69003, France; Université Lyon 1, Villeurbanne, F-69622, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France email: [email protected], [email protected]
Laure Fouchet
Affiliation:
Department of Physics, ETH Zurich, CH-8093 Zurich, Switzerland email: [email protected]
Sarah T. Maddison
Affiliation:
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia email: [email protected]
Guillaume Laibe
Affiliation:
Université de Lyon, Lyon, F-69003, France; Université Lyon 1, Villeurbanne, F-69622, France; CNRS, UMR 5574, Centre de Recherche Astrophysique de Lyon, École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with particle size and planetary gaps are much sharper than in the gas phase, making them easier to detect with ALMA than anticipated. We also find that there is a range of masses where a planet can open a gap in the dust layer whereas it doesn't in the gas disk. Our dust distributions are fed to the radiative transfer code MCFOST to compute synthetic images, in order to derive constraints on the settling and growth of dust grains in observed disks.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Barrière-Fouchet, L., Gonzalez, J.-F., Murray, J. R., Humble, R. J., & Maddison, S. T. 2005, A&A, 443, 185Google Scholar
Dominik, C., Blum, J., Cuzzi, J. N., & Wurm, G. 2007, in: Reipurth, B., Jewitt, D. & Keil, K. (eds.), Protostars and Planets V (Tucson: University of Arizona Press), p. 783Google Scholar
Dullemond, C. P. & Dominik, C. 2005, A&A, 434, 971Google Scholar
Fouchet, L., Maddison, S. T., Gonzalez, J.-F., & Murray, J. R. 2007, A&A, 474, 1037Google Scholar
Garaud, P., Barrière-Fouchet, L., & Lin, D. N. C. 2004, ApJ, 603, 292CrossRefGoogle Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007, Nature, 448, 1022CrossRefGoogle Scholar
Laibe, G., Gonzalez, J.-F., Fouchet, L., & Maddison, S. T. 2008, in preparationGoogle Scholar
Maddison, S. T., Fouchet, L., & Gonzalez, J.-F. 2007, Ap&SS, 311, 3Google Scholar
Paardekooper, S.-J. & Mellema, G. 2006, A&A, 453, 1129Google Scholar
Pinte, C., Ménard, F., Duchêne, G., & Bastien, P. 2006, A&A, 459, 797Google Scholar
Pinte, C., Fouchet, L., Ménard, F., Gonzalez, J.-F., & Duchêne, G. 2007, A&A, 469, 963Google Scholar
Stepinski, T. F. & Valageas, P. 1997, A&A, 319, 1007Google Scholar
Varnière, P., Bjorkman, J. E., Frank, A., et al. 2006, ApJ, 637, L125CrossRefGoogle Scholar
Watson, A. M., Stapelfeldt, K. R., Wood, K., & Ménard, F. 2007, in: Reipurth, B., Jewitt, D. & Keil, K. (eds.), Protostars and Planets V (Tucson: University of Arizona Press), p. 523Google Scholar
Weidenschilling, S. 1977, MNRAS, 180, 57CrossRefGoogle Scholar
Wolf, S. & D'Angelo, G. 2005, ApJ, 619, 1114CrossRefGoogle Scholar