Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:16:03.686Z Has data issue: false hasContentIssue false

Dark matter in the Galactic center

Published online by Cambridge University Press:  22 May 2014

Tim Linden*
Affiliation:
The Kavli Institute for Cosmological Physics, University of Chicago Chicago, IL 60637USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In addition to boasting the highest density of baryonic matter in our galaxy, the center of the Milky Way is also believed to contain an extremely high density of dark matter particles. While dark matter is expected to be gravitationally subdominant to baryons near the Galactic center, many models allow for the annihilation of dark matter into standard model particles, a phenomenon which could be a significant source of high energy radiation in the Galactic center region. In fact, standard models of the dark matter density distribution and annihilation spectrum predict that dark matter at the Galactic center would (1) produce the brightest flux from dark matter annihilation of any region in the sky, and (2) contribute a significant portion of the total γ-ray luminosity observed within several degrees of the Galactic center by the Fermi/LAT. This makes the effort to understand and differentiate the morphologies and spectral features of dark matter and astrophysical γ-ray emission at the Galactic center potentially rewarding. Here, I will summarize the recent developments in indirect searches for dark matter annihilation at the Galactic center, and discuss several of the difficulties in producing accurate models of the high energy astrophysical emission. Finally, I will comment on current efforts to produce multi-wavelength models which better constrain or indicate a dark matter signal at the Galactic center.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aalseth, C., et al. 2011, Phys. Rev. Lett. 106, 131310Google Scholar
Abazajian, K., 2011, JCAP 3, 10Google Scholar
Abazajian, K. & Kaplinghat, M. 2012, Phys. Rev. D 86, 8CrossRefGoogle Scholar
Abdo, A. A., et al. 2013, ApJS 208, 17Google Scholar
Aharonian, F., et al. 2006, ApJ 636, 777Google Scholar
Aharonian, F., et al. 2006, Nature 439, 695Google Scholar
Ahmed, Z., et al. 2011, Phys. Rev. Lett. 106, 131302Google Scholar
Akerib, D., et al. 2013, arXiv: 1310.8214Google Scholar
Angloher, G., et al. 2012, European Physics Journal 72, 1971Google Scholar
Aprile, E., et al. 2011, Phys. Rev. Lett. 107, 131302Google Scholar
Chernyakova, M., Malyshev, D., Aharonian, F. A., Crocker, R., & Jones, D. 2011, ApJ 726, 60Google Scholar
Cirelli, M., Serpico, P., & Zaharijas, G. 2013, JCAP 11, 35Google Scholar
Diemand, J., et al. 2008, Nature 454, 735Google Scholar
Ferrière, K. 2012, A&A 540, 50Google Scholar
Gnedin, O. Y., Ceverino, D., Gnedin, N. Y., Klypin, A. A., Kravtsov, A. V., Levine, R., Nagai, D., & Yepes, G. 2011, arXiv 1108.5736Google Scholar
Gordon, C. & Macias, O. 2013, Phys. Rev. D 88, 8Google Scholar
Governato, F., Zolotov, A., Pontzen, A., Christensen, C., Oh, S. H., Brooks, A. M., Quinn, T., Shen, S., & Wadsley, J. 2012, MNRAS 422, 1231CrossRefGoogle Scholar
Hooper, D., Cholis, I., Linden, T., Siegal-Gaskins, J., & Slatyer, T. 2013, Phys. Rev. D 88, 8Google Scholar
Hooper, D. & Goodenough, L. 2011, Phys. Lett. B 697, 412Google Scholar
Hooper, D. & Linden, T. 2011, Phys. Rev. D 84, 12Google Scholar
Hooper, D. & Slatyer, T. 2013, Physics of the Dark Universe 2, 118Google Scholar
Iocco, F., Pato, M., Bertone, G., & Jetzer, P. 2011, JCAP 029, 29Google Scholar
Lesch, H., Schlickeiser, R. & Crusius, A. 1988, A&A 200, L9Google Scholar
Linden, T., Hooper, D., & Yusef-Zadeh, F. 2011, ApJ 741, 95CrossRefGoogle Scholar
Linden, T., Lovegrove, L., & Profumo, S. 2012, ApJ 753, 41CrossRefGoogle Scholar
Linden, T. & Profumo, S. 2012, ApJ 760, 23Google Scholar
McMillan, P. J. 2011, MNRAS 414, 2446Google Scholar
Mori, K. 2013, ApJ Lett. 770, L23Google Scholar
Navarro, J., Frenk, C., & White, S. 1996, ApJ 462 563Google Scholar
Navarro, J., et al. 2004, MNRAS 349, 1039Google Scholar
Pagels, H. & Primack, J. 1982, Phys. Rev. Lett. 48 223Google Scholar
Spitler, L., et al. 2014, ApJ Lett. 780 L3Google Scholar
Steigman, G. 1979, Ann. Rev. of Nuclear and Particle Science 29 313Google Scholar
Voss, R. & Gilfanov, M. 2007, A&A 468 49VGoogle Scholar