Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T03:24:02.627Z Has data issue: false hasContentIssue false

Constraints on Growth Index from LSS

Published online by Cambridge University Press:  01 July 2015

Athina Pouri
Affiliation:
Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efesiou 4, 11527, Athens, Greece emails: [email protected], [email protected] Faculty of Physics, Department of Astrophysics - Astronomy - Mechanics, University of Athens, Panepistemiopolis, Athens 157 83
Spyros Basilakos
Affiliation:
Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efesiou 4, 11527, Athens, Greece emails: [email protected], [email protected]
Manolis Plionis
Affiliation:
Physics Dept., Sector of Astrophysics, Astronomy & Mechanics, Aristotle Univ. of Thessaloniki, Thessaloniki 54124, Greece Instituto Nacional de Astrofísica Óptica y Electronica, 72000 Puebla, México IAASARS, National Observatory of Athens, P.Pendeli 15236, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We utilize the clustering properties of the Luminous Red Galaxies (LRGs) and the growth rate data in order to constrain the growth index (γ) of the linear matter fluctuations based on a standard χ2 joint likelihood analysis between theoretical expectations and data. We find a value of γ=0.56± 0.05, perfectly consistent with the expectations of the ΛCDM model, and Ωm0 =0.29± 0.02, in very good agreement with the latest Planck results. Our analysis provides significantly more stringent growth index constraints with respect to previous studies as indicated by the fact that the corresponding uncertainty is only ∼ 0.09 γ.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Copeland, E. J., Sami, M., & Tsujikawa, S. 2006, Int. J. of Mod. Phys. D., 15, 1753CrossRefGoogle Scholar
Caldwell, R. R. & Kamionkowski, M. 2009, Ann. Rev. Nucl. Part. Sci., 59, 397CrossRefGoogle Scholar
Amendola, L. & Tsujikawa, S. 2010, Dark Energy: Theory and Observations, Cambridge University Press, Cambridge UKCrossRefGoogle Scholar
Peebles, P. J. E. 1993, “Principles of Physical Cosmology”, Princeton University Press, Princeton, New JerseyGoogle Scholar
Wang, L. & Steinhardt, P. J. 1998, ApJ, 508, 483Google Scholar
Matsubara, T. 2004, ApJ, 615, 573CrossRefGoogle Scholar
Basilakos, S. & Plionis, M. 2005, MNRAS, 360, L35CrossRefGoogle Scholar
Basilakos, S. & Plionis, M. 2006, ApJ, 650, L1CrossRefGoogle Scholar
Krumpe, M., Miyaji, T., & Coil, A. L. 2013, arXiv:1308.5976, 650, L1Google Scholar
Basilakos, S., Dent, J. B., Dutta, S., Perivolaropoulos, L., & Plionis, M. 2012, Phys. Rev. D., 85, 123501Google Scholar
Bean, R., et al. 2013, arXiv:1309.5385Google Scholar
Sawangwit, U., et al. 2011, MNRAS, 416, 3033Google Scholar
Basilakos, S., Nesseris, S., & Perivolaropoulos, L. 2013, Phys. Rev. D., 87, 123529CrossRefGoogle Scholar
Eisenstein, D. J. & Hu, W. 1998, ApJ, 496, 605CrossRefGoogle Scholar
Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15Google Scholar
Spergel, D., Flauger, R., & Hlozek, R. 2013, arXiv:1312.3313Google Scholar
Peacock, J. A. & Dodds, S. J. 1994, MNRAS, 267, 1020Google Scholar
Smith, R. E., et al. 2003, MNRAS, 341, 1311CrossRefGoogle Scholar
Widrow, L. M., Elahi, P. J., Thacker, R. J., Richardson, M., & Scannapieco, E. 2009, MNRAS, 397, 1275Google Scholar
Basilakos, S., Plionis, M., & Pouri, A. 2011, Phys. Rev. D., 83, 123525Google Scholar
Hajian, A., Battaglia, N., Spergel, D. N., Bond, J. R., Pfrommer, C., & Sievers, J. L. 2013, JCAP, 11, 64CrossRefGoogle Scholar
Pouri, A., Basilakos, S., & Plionis, M. 2014, arXiv:1409.0964Google Scholar
Nesseris, S., Basilakos, S., Saridakis, E. N., & Perivolaropoulos, L. 2013, Phys. Rev. D., 88, 103010CrossRefGoogle Scholar