Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T04:20:29.387Z Has data issue: false hasContentIssue false

Cloud formation from large-scale instabilities

Published online by Cambridge University Press:  01 August 2006

Woong-Tae Kim*
Affiliation:
Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-742, Republic of Korea email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss recent advances in cloud formation via gravitational instability under the action of self-gravity, magnetic fields, rotational shear, active stars, and/or stellar spiral arms. When shear is strong and the spiral arms are weak, applicable to flocculent galaxies at large, swing amplification exhibits nonlinear threshold behavior such that disks with a Toomre parameter Q < Qc experience gravitational runaway. For most realistic conditions, local models yield Qc ~ 1.4, similar to the observed star formation thresholds. When shear is weak, on the other hand, as in galactic central parts or inside spiral arms, magneto-Jeans instability is very powerful to form spiral-arm substructures including gaseous spurs and giant clouds. The wiggle and Parker instabilities proposed for cloud formation appear to be suppressed by strong non-steady motions inherent in vertically-extended spiral shocks, suggesting that gravitational instability is a primary candidate for cloud formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Blitz, L. & Shu, F.H. 1980, ApJ 238, 148CrossRefGoogle Scholar
Das, M. & Jog, C.J. 1996 ApJ 462, 309CrossRefGoogle Scholar
Elmegreen, B.G. 1987, ApJ 312, 626CrossRefGoogle Scholar
Elmegreen, B.G. 1994, ApJ 433, 39CrossRefGoogle Scholar
Heyer, M.H. & Terebey, S. 1998, ApJ 502, 265CrossRefGoogle Scholar
Jog, C.J. & Solomon, P.M. 1984, ApJ 276, 114CrossRefGoogle Scholar
Kim, C.-G., Kim, W.-T. & Ostriker, E.C. 2006, ApJ 649, L13CrossRefGoogle Scholar
Kim, J., Franco, J., Hong, S.S., Santillán, A. & Martos, M.A. 2000, ApJ 531, 873CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E.C. 2001, ApJ 559, 70CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E.C. 2002, ApJ 570, 132CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E.C. 2006a, ApJ 646, 213CrossRefGoogle Scholar
Kim, W.-T. & Ostriker, E.C. 2006b, ApJ submittedGoogle Scholar
Kim, W.-T., Ostriker, E.C. & Stone, J.M. 2002, ApJ 581, 1080CrossRefGoogle Scholar
Kim, W.-T., Ostriker, E.C. & Stone, J.M. 2003, ApJ 599, 1157CrossRefGoogle Scholar
Kim, W.-T., Hong, S.S., Yoon, S.-C., Lee, S.M. & Kim, J. 1999, in Numerical Astrophysics eds. Miyama, S.M., Tomisaka, K., & Hanawa, T. (Boston: Kluwer), 111CrossRefGoogle Scholar
La Vigne, M.A., Vogel, S.N. & Ostriker, E.C. 2006, ApJ in press; astro-ph/0606761Google Scholar
Li, Y., Mac Low, M.M. & Klessen, R.S. 2005, ApJ 620, L19CrossRefGoogle Scholar
Lynden-Bell, D. 1966, Observatory 86, 57Google Scholar
Martin, C.L. & Kennicutt, R.C. 2001, ApJ 555, 301CrossRefGoogle Scholar
Parker, E.N. 1966, ApJ 145, 811CrossRefGoogle Scholar
Rafikov, R.R. 2001, MNRAS 323, 445CrossRefGoogle Scholar
Santillán, A., Kim, J., Franco, J., Martos, M., Hong, S.S. & Ryu, D. 2000, ApJ 545, 353CrossRefGoogle Scholar
Scoville, N. & Rector, T. 2001, HST press release at http://oposite.stsci.edu/pubinfo/PR/2001/10/index.htmlGoogle Scholar
Toomre, A. 1981, in: Fall, S.M. & Lynden-Bell, D. (eds.), Structure and Evolution of Normal Galaxies (Cambridge: Cambridge Univ. Press), p. 111Google Scholar
Vogel, S.N., Kulkarni, S.R. & Scoville, N.Z. 1988, Nature 334, 402CrossRefGoogle Scholar
Wada, K. & Koda, J. 2004, MNRAS 349, 270CrossRefGoogle Scholar